67 responses

View all responses

Summary

Name of the programme

- BE Mechanical G1: 67 (100%)
- BE Mechanical G2: 0 (0%)
- BE Mechanical SW: 0 (0%)
- Other: 0 (0%)

Dummy No (19G1XX) XX • is the dummy number provided, Enter single digit numbers as 01 etc

01
60
40
19G201
36
62
73
20
23
48
33
41
10
19
64
Feedback on the attainment of Programme Outcomes (PO)

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>12</td>
<td>17.9%</td>
</tr>
<tr>
<td>Very Good</td>
<td>24</td>
<td>35.8%</td>
</tr>
<tr>
<td>Good</td>
<td>21</td>
<td>31.3%</td>
</tr>
<tr>
<td>Fair</td>
<td>10</td>
<td>14.9%</td>
</tr>
</tbody>
</table>

Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

<table>
<thead>
<tr>
<th>Category</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>10</td>
<td>14.9%</td>
</tr>
<tr>
<td>Very Good</td>
<td>24</td>
<td>35.8%</td>
</tr>
<tr>
<td>Good</td>
<td>22</td>
<td>32.8%</td>
</tr>
<tr>
<td>Fair</td>
<td>11</td>
<td>16.4%</td>
</tr>
</tbody>
</table>

Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to prove valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering, activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the
Knowledge of, and need for sustainable development.

- Excellent: 11 (16.4%)
- Very Good: 20 (29.9%)
- Good: 26 (38.8%)
- Fair: 10 (14.9%)

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

- Excellent: 11 (16.4%)
- Very Good: 25 (37.3%)
- Good: 22 (32.8%)
- Fair: 9 (13.4%)

Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

- Excellent: 17 (25.4%)
- Very Good: 29 (43.3%)
- Good: 12 (17.9%)
- Fair: 9 (13.4%)

Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

- Excellent: 13 (19.4%)
- Very Good: 29 (43.3%)
- Good: 17 (25.4%)
- Fair: 8 (11.9%)

Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as
a member and leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

An ability to design, model, simulate and analyze mechanical and thermal systems using appropriate tools, techniques and materials.

An ability to select appropriate manufacturing processes and systems for engineering products by applying industrial engineering principles to achieve economy.
An ability to understand various standard practices pertaining to design, manufacturing, operations and testing.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>17</td>
<td>25.4%</td>
</tr>
<tr>
<td>Very Good</td>
<td>27</td>
<td>40.3%</td>
</tr>
<tr>
<td>Good</td>
<td>15</td>
<td>22.4%</td>
</tr>
<tr>
<td>Fair</td>
<td>8</td>
<td>11.9%</td>
</tr>
</tbody>
</table>

List the courses that have STRONG relationship with the programme

- Strength of materials
- Automobile Engineering
- DFMA
- Design
- Manufacturing
- Thermodynamics, kinetics of machinery, heat transfer
- Manufacturing engineering
- Automobile engineering
- mostly All courses
- Hydraulics and Pneumatics
- Heat and Mass Transfer
- Vibration and Noise Engineering
- Mechanics of Materials Kinematics of Machinery
- Fluid Mechanics
- Heat and Mass Transfer
- Design of Machine Elements
- Probability and Statistics Design for Manufacture and Assembly Manufacturing Processes
- Kinematics of machinery
- Automobile Engineering Manufacturing Processes
- Engineering graphics, Machine drawing, CAD, CAM, CAE, Engineering mechanics, Mechanics of material, Kinematics and dynamics of machinery, DOME, DFMA Fluid mechanics, Thermodynamics, IC engines, R&AC, Manufacturing processes, Automobile engineering, Pneumatics and automation, Vibration engineering, Supply chain management
- Design for Manufacture and Assembly
- Strenght of materials
- Fluid mechanics, python, computational fluid dynamics, operation research, DFMA
- Machine design
- All courses
- KOM
- 15M820
- SOM, DOM, GD&T, DOME and Manufacturing process
SOM
MOM, Thermal engg 1,2, KOM, DOM, DOME
Manufacturing Processes, Strength of materials, Thermodynamics
MOM, KOM, DOM, FM, TD, TE, HMT, DFMA, DOME, DOTS, EM
Manufacturing processes
Lab facility
Manufacturing, design
Manufacturing Technology, Strength of Materials, Kinematics and Dynamics of Machinery, Thermal Engineering
computer numerical control
SoOM, DOM, DOME, DOTS
FM, TD, HMT, MoM
Strength of Materials, Automobile Engineering
M. P, DFMA, DOTS
DFMA, FEA, HMT, Manufacturing Process, Engineering Graphics
HMT
Design of machine elements, design of transmission systems
Strength of Materials
Manufacturing Science
Automobile Engineering, Design of machine elements, Industrial metallurgy
Thermal engineering
Mechanics of materials
Automobile Engineering
Design subjects
Strength of materials, Mechanical vibration, Thermal engineering
Som, thermo, fluid
Good
DFMA, AUTOMOBILE, SOM, RQC,
Operations research, Supply chain management
Autodesk Fusion 360
Manufacturing process
cnc programming
KOM, MP, DFMA, FM
KOM, MOM, DOM
MOM Thermodynamics KOM
Thermodynamics
SOM, KOM, DFMA
List the courses that have MEDIUM relationship with the programme

- Economics
- Turbomachinery
- Fluid mechanics
- Power plant engineering
- Tool design
- C programming
- Engineering economics, SCM, engineering design
- Kinematics and dynamics of machinery
- Energy storage devices and fuel cells
- None
- Basics of Electrical and Electronics Engineering Human Resource Management Engineering Economic Analysis
- Metrology and Instrumentation Industrial metallurgy Turbomachinery Manufacturing Processes Tool Design
- Human Resource Management Concepts of engineering
- Basics of Electrical and Electronic Engineering
- Turbomachinery, Tool design, Powerplant engineering, BEEE, RQC, Human resource management, Non traditional machining, Solid state joining process, Metrology, Industrial metallurgy
- Industrial Psychology and Work Ethics Tool design, probability, hydraulic and pneumatic
- No comment
- Power plant Engineering
- SOM
- THERMAL, SCM AND VIBRATION Strength of Materials
- Industrial psychology
- OR, DFMA,
- Flexible manufacturing system, Industrial psychology
- Computer numerical control Programming
- OR, HAP, FMS, CNC, METALLURGY
- Turbomachinery
- Supply Chain Management
- Thermal engineering
- Thermal
design lab, tequip
Industrial Psychology
Automobile engineering
Renewable energy sources
Metallurgy
KOM, DOM.
Mechanics of Materials
Metrology and Instrumentation
Supply chain management
Thermodynamics, Metrology
Engineering mechanics
Manufacturing Process
Thermal subjects
OR, economics
Good
DFMA
EEA
Hmt, Fluid mechanics, KOM
Operational research
Solid work
Mechanics of materials
automobile engineering
EEA, PPE
Design
Metallurgy
Numerical methods Psychology EEE
DOTS, ENTREPRENEURSHIP, SUPPLY CHAIN MANAGEMENT

List the courses that have WEAK relationship with the programme

C programming
Thermal
Manufacturing
Powerplant Engineering
Power plant Engineering
Nil
English
Thermal engineering
Nothing
Supply chain management
Industrial Psychology and Work Ethics

Industrial Psychology, Sociology and work ethics Power Plant Engineering Computer Numerical Control and Robotics Basics of Electrical and Electronics Engineering
Basics of Electrical and Electronics Engineering
Electrical and Electronics Engineering
Industrial Psychology and Work Ethics
Metallurgy laboratory
Flexible Manufacturing Systems
Power plant engineering, manufacturing , thermal engineering-2 ,
Power plant engineering
No comment
Turbo machinery
Dome
C programming and related subjects

POWER PLANT ENGINEERING

Metrology, Industrial Psychology, powerplant Engg
Power Plant Engineering
Analytical
Problem solving and C programming, Power plant engineering, EEA
Turbomachinery
few faculty
Industrial psychology
Engineering Economic analysis
Textile
EEE
Engineering Economics
Power plant engineering.
C Programme
Hybrid vehicles and fuel cells
C
Entrepreneurship
Fluid mechanics
Turbo machineries
Automobile engineering
Fluid Mechanisms
Scm
Power plant engineering
C programming
Practical knowledge is must be include
Engineering Economics Analysis
FMS, POWER PLANT, C programming
Thermal Engineering
Kinematics of machinery
CAD
Dynamics of machinery
turbo machinery
Psychology
BEEE
Economics Entrepreneurship
Operation research
All human resource elective, NTM, SSJP

Rate the impact of Teaching-learning process in attaining the Programme Outcomes

<table>
<thead>
<tr>
<th></th>
<th>Excellent</th>
<th>12</th>
<th>17.9%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Very Good</td>
<td>22</td>
<td>32.8%</td>
</tr>
<tr>
<td></td>
<td>Good</td>
<td>19</td>
<td>28.4%</td>
</tr>
<tr>
<td></td>
<td>Fair</td>
<td>14</td>
<td>20.9%</td>
</tr>
</tbody>
</table>

Identify strengths of the Programme

Syllabus
Faculties
Upto date
Very good syllabus in each course
Design
Understanding the analytical parts
Good technical and practical knowledge
Helpful for competitive exams
Faculties in Design and Manufacturing field have indepth knowledge about the subjects they handle.
Experienced Faculty Well framed curriculum and Syllabus Effective methods of Assessment
Good availability of Study Material pertaining to Syllabus
Ragu sir, Shanmugam sir and Manoharan sir have in-depth knowledge about the lectures they handle.
More assessments are conducted
Well framed Syllabus
Some basic subjects are taught well
Regularly updated syllabus and CBCS system
Analytical
Rigid structure, planned framework
Analytical skills
Understanding the real life applications
Nothing
Practical oriented
Taking real time issues as project
Very good syllabus
Strong in fundamentals
Courses almost covering the basics needed
Availability of Laboratories
Laboratory explanations
Gives an in depth theoretical knowledge in subjects
-
Laboratories, Faculties
Strong Fundamental and technical
Laboratories, Library, Class rooms
Good learning, developing and gaining more knowledge
Updates
lab facility
Many Lab classes are conducted and assignment presentations are conducted which helps students to overcome their stage fear and communicate the concepts in an efficient manner.
Easy understand
Broadeest fields
Practical study
Understanding
Foundation subjects are up to the mark.
Technical Knowledge
Able to apply the concepts in laboratory classes
Experienced faculties and availability of technological facilities
Technical knowledge
Black board teaching, Assignment presentations, Periodic project reviews
Good teacher
Puntuality
Guidance of faculties
Good teaching
Basic concepts are explained easily
Well framed syllabus
To learn important of mechanical engineering
None
FACULTIES OF DESIGN ARE EXCELLENT.Manoharan sir is a true inspiration to all
Updated syllabus
Wide scope
Good technical knowledge
Laboratory
communication
Good coverage of all the subject related to mechanical
Nil
Research skill Real time application
Elective papers
Only staffs like C Shanmugam, ARL and Mohanraj

Identify weaknesses of the Programme

Nil
Nothing
Job opportunities
Repetition of topics
Vast number of electives not touched
Outdated syllabus
Unable to have a deeper depth on practical parts
No practical difficulties were taught
Basics of Thermodynamics and Fluid Mechanics can be illustrated in a better manner.
Certain improper laboratory facilities
Thermal Sciences and Fluid Mechanics subjects can be handled in a better way
Practical classes can be improved
Thermal and Fluid Sciences basics were not discussed at all in third semester itself
*Innovation practices laboratory doesn't have proper guidance and final year project guidance is also not well *Awareness about outside job requirement is lagging
Not allowing students to present their internship projects.
Time limitations , disability to select required subjects from second year, overburden in 7th sem
Theory story writing
Less live demonstration
Not enough lab facility
Batch segregation
Professor not completing the portions
Lack of practical exposure
Could make students to work and know more on current technologies and current softwares.
Less support from the Head
Continuous tests
Theory of a subject should come a semester before the laboratory practice of that subject. But both come in same semester.

Also faculties
Takes time to understand
Lack of sufficient books in the library, Lack of error free machines in Lab, Insufficiency on days of lendings books, Late introduction of WiFi campus.
Lab class needs to improve
Teaching
faculty
partiality

More of Theoretical classes are conducted for some subjects. Little bit of practical stuffs like using design or analysis software could be taught/ given as assignments for better understanding.
Less practical session
Work load to the students
Study to exams
Not strict staff

Courses must reflect along with the outside world. For instance, subjects pertaining to mechanical automation can be included in the curriculum, for automation is the future world. Also, FEA can be made as a compulsory course.
Not related to core
Equipments or apparatus in laboratory are not precise
Shortage of time to completion
No weakness

There's no coordination between the practical courses and theoretical studies
Bad interaction with juniors
Lack of knowledge

Vast syllabus
Software classes are needed
No concern from dept regarding placement
Syllabus level is very high
None
Faculties of thermal science is not upto mark Faculties of other department papers are not arranged with proper standard
Not enough electives
Lack Software skills
Valuation of exam papers
none
Not enough transfer of knowledge from professors to students
Nil
Faculties
Identity
Some important core paper are in electives
All other faculties

Grade the quality of the programme on a scale of one to five

Least: 1 6 9%
2 2 3%
3 14 20.9%
4 30 44.8%
Most: 5 15 22.4%

Your personal feedback for the department development
Nil
Good
Department doesn't show interest in placements
Please provide a good faculty for thermal stream. It's getting worse every year
Please encourage students to involve in projects (especially TOPIC choosing). In interview interviewers ask, where do you find this topic. We find difficulties in choosing the career helping projects.
Department should be stringent on students doing projects and internships on their own for the welfare of their placements
Change the HOD and the management is not up to the mark
It was a very good experience studying in this college
No help regarding placements

Basic concepts of various subjects can be taught with videos or any other visual means, so that we could be strong in basics. The recent developments can also be shared with us. All students must be advised to present their project works in other college or events *Students can be taught with many mechanical CAD and analysis softwares*

1. Innovation practices could be placed in the 5th semester. 2. Allowing students to present their internship projects.

Need to give more extra hours for laboratory

Need strong leadership, should provide support for student activities like projects, attending competition. Reduce the need to get signatures from various staffs. Improve accessibility of staff member. Improve staff knowledge and also their attitude

Some staffs are extremely good with delivery of knowledge whereas some don't even teach us...poor valuation of papers

Include subject oriented to mechatronics & robotics.

Department should ensure that professors are completing the portions

I request the Head of the Dept to meet the queries of the students who are waiting outside the Cabin. If a student has to meet HoD or get permission for anything, he has to wait for at least an average of half an hour. Please consider this as a request. So that upcoming juniors are not worried.. HoD is able to take classes in a super way. So please continue taking KOM, DOM classes. Please take care on the sensorics laboratory where there are lot of struggles to get output. Please encourage the students for local IV conducted by associations

More concentration should be given for the proper evaluation of semester answer sheets

Student friendly environment is needed

-

Some faculties are not up to the standard. Please grade their skills on a regular basis so that they keep themselves updated. Make question papers for exams which stimulate at least a little thinking

Treat everyone equal

Nothing personal. Overall is good. Had a great chance to procure more knowledge in the campus

Concentrate on teaching skills

Plug point facilities could be provided outside the department so that students can use their laptops. There are plug points but it's located in a place where laptops cannot be placed and used easily. Lab equipments do not give proper readings at all. There's hardly any equipment in the lab which works perfectly. So even for project work, we could not use some of the instruments since the staff and lab assistants felt that in case of failure of equipments, it cannot be renewed easily and students would not be able to use it for their lab classes and so we did not get permission for using it. These could be serviced now and then for easy use. IC Engine test rig belonging to Mech department available at the back of I block failed due to so problems and they said that it would take 2 months to repair it due to which we could not perform experiments for our project. We had to go to other colleges for it and they charged about Rs.3000 per sample. So, if something fails in the campus, it would be nice if it is repaired fastly. Semester holidays could be extended a little bit, maybe two weeks will do enough.
Can do more interesting projects

Kindly offer the selected course to the interested students irrespective of number of students opted.

The non potential staffs must be warned

Quality teaching should be looked after

Please calibrate the laboratory equipments (Heat power lab)...

Bring in more practical classes

Interaction, exposure and motivation to Mechanical students is must and need a improvement in that from Mechanical department

Department's major focus would be placements. Department should create a freedom to speak with head of department. Labs can be digitalized so that the student can utilise well. Now a days it takes more time to get the permission to use the laboratory rather than doing the work. The placement semester (probably 7 th) work loads can be reduced and shifted to any other semester so that placements wouldn't affect.

Advance futures

Demo model and videos are required to explain concepts

Concentrate more on basics and placement

I'm really happy for studying PSG College of Technology and project level of PSG TECH going down please give more important of this one, in PSG TECH students (topper) could not like to going higher studies please encrag topper students for higher studies and IAS, IPS, etc.

Please create a regular assessment for the faculties Arrange faculties based on the students choice

Not helpful for me

Please make sure every topic is taught by the faculty. Ensure enough understanding of the subject by students. Expose all the students to various opportunities. More projects and design related works can be given. Industrial visits can be more frequent. nearby industries can be visited as one day plan. Faculties should be audible to students. Train students for competitive exams not for questions in semester papers.

Nill

Strict the faculties

Number of daily responses
71 responses

View all responses Publish analytics

Summary

Name of the programme

BE Mechanical G1 0 0%
BE Mechanical G2 71 100%
BE Mechanical SW 0 0%

Dummy No (19G2XX) XX - is the dummy number provided, Enter single digit numbers as 01etc

19G208
19G201
19G234
19G210
19G249
37
19G245
19G236
19G238
19G258
19G250
19G247
19G262
19G226
19G268
19G227
Feedback on the attainment of Programme Outcomes (PO)

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

- Excellent: 11 (15.5%)
- Very Good: 31 (43.7%)
- Good: 24 (33.8%)
- Fair: 5 (7%)

Problem analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.

- Excellent: 10 (14.1%)
- Very Good: 29 (40.8%)
- Good: 27 (38%)
- Fair: 5 (7%)

Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

- Excellent: 10 (14.1%)
Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to prove valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering, activities with an understanding of the limitations.

The engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

<table>
<thead>
<tr>
<th>Category</th>
<th>Rating</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>13</td>
<td>18.3%</td>
</tr>
<tr>
<td>Very Good</td>
<td>31</td>
<td>43.7%</td>
</tr>
<tr>
<td>Good</td>
<td>24</td>
<td>33.8%</td>
</tr>
<tr>
<td>Fair</td>
<td>3</td>
<td>4.2%</td>
</tr>
</tbody>
</table>

Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.

<table>
<thead>
<tr>
<th>Category</th>
<th>Rating</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>20</td>
<td>28.2%</td>
</tr>
<tr>
<td>Very Good</td>
<td>31</td>
<td>43.7%</td>
</tr>
<tr>
<td>Good</td>
<td>16</td>
<td>22.5%</td>
</tr>
<tr>
<td>Fair</td>
<td>4</td>
<td>5.6%</td>
</tr>
</tbody>
</table>

Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

<table>
<thead>
<tr>
<th>Category</th>
<th>Rating</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>16</td>
<td>22.5%</td>
</tr>
<tr>
<td>Very Good</td>
<td>25</td>
<td>35.2%</td>
</tr>
<tr>
<td>Good</td>
<td>25</td>
<td>35.2%</td>
</tr>
<tr>
<td>Fair</td>
<td>5</td>
<td>7%</td>
</tr>
</tbody>
</table>

Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as
a member and leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

An ability to design, model, simulate and analyze mechanical and thermal systems using appropriate tools, techniques and materials.

An ability to select appropriate manufacturing processes and systems for engineering products by applying industrial engineering principles to achieve economy.
An ability to understand various standard practices pertaining to design, manufacturing, operations and testing.

- Excellent: 12 (16.9%)
- Very Good: 33 (46.5%)
- Good: 20 (28.2%)
- Fair: 6 (8.5%)

List the courses that have STRONG relationship with the programme

- Strength of materials
- Manufacturing process
- Thermal engineering
- Strength of materials
- DFMA
- Manufacturing
- Design
- Design, Manufacturing, Thermal
- Manufacturing technology
- Mechanics of materials, manufacturing process,
- Mechanical of material, kinetics of machinery
- Engineering Economic Analysis, Kinematics of Machinery, Project Work Presentation
- Mechanics of materials
- Kinematics of machinery, Thermal Engineering, Design of transmission systems.
- Fluid mechanics
- Thermal engineering, Kinematics And Dynamics, SOM, heat transfer
- Physics Thermodynamics Mechanics of materials Kinematics of machinery Dynamics of machinery Thermal engineering I and II Heat and mass transfer Engineering economics
- DFMA, TE, SOM, Engineering mechanics
- Fluid mechanics, DFMA, DOM
- Operations Research
- Kinematics, Dynamics and Strenth of Materials
- Mechanics of Materials, Supply Chain Management, Thermal Eng, Vibration
- Thermodynamics kinematics of machinery
- Design for manufacturing and assembly, Thermodynamics, Turbo machinery, Mechanics of materials
- MOM, DFMA
Design engineering
Thermodynamics Fluid Mechanics
Strength of materials Design of Mfg and assembly
Project work 1 & 2
Engineering economics and analysis
EM,SOM,DFMA,THERMAL SUBJECTS,MP-1,2,ED,KOM,DOM
Design for manufacturing and assembly
Manufacturing processes Thermal engineering Mechanics of materials Operations research
Mechanics of Materials , EM , Thermodynamics, Thermal Engineering
Thermal engineering, strength of materials
Thermal Engineering Strength of Materials
Strength of materials, Thermal Engineering, GD&T,Manufacturing Processes 1&2,KOM,CAD Lab
Strength of Materials
DFMA,SOM, Thermal
Manufacturing
SOM, Thermal
Supply chain management
Design courses
Human Resource Management, Indian constitution
Turbo machinery
Design for manufacture and assembly
Industrial psychology, Thermal Engineering I
DFMA, Heat and Mass Transfer
Python
Manufacturing technology
Design for manufacture and assembly , ThermAL Engineering
Engineering mechanics, mechanics of materials
Dynamics of machinery
Manufacturing and Design
Non traditional machining
Thermal
Kinematics of Machinery, Thermodynamics, Automobile engineering
Strength of materials, Thermal Engineering
Mathematics, fluid mechanics
DFMA, EEA
List the courses that have MEDIUM relationship with the programme

Strength of materials
Thermal engineering
Industrial
Tool design
Industrial Psychology
Engineering Mathematics, Humanities
Engineering economics
Dots
Thermal engineering 1 and thermal engineering 2
Metrology and Instrumentation, Tool design
Dynamic of machinery
Concepts of Engineering design
Humanities papers
DFMA
Chemistry Energy storage devices and fuel cells
DOTS, Tool Design, MP, KOM
kinematics of machinery
Linear algebra
Supply chain Management
Engineering Economy
Turbomachinery, Fluid mechanics
Power plant Eng,CnC and automation
RQC
Metrology, Operation Research
Industrial metallurgy
Energy storage devices and fuel cells
Industrial psychology
Thermal Engineering
Operation research
Numerical methods Rapid prototyping
Thermodynamics CNC & Robotics Basics of EEE Industrial Metallurgy
Concepts of engineering design
Supply chain management
FM,DOTS,DOME,Material science,MetaIurgy,Turbomachinery
Automobile engineering
Dynamics of machinery Kinematics of machinery Tool design
BEEE
Turbo machinery, heat and mass transfer
Heat and Mass transfer Design for manufacturing
Metallurgy, FEA, Automobile Engineering, operations research
Engineering econic analysis
Heat and Mass Transfer
Thermal engineering
English
KOM,EG,FM
OR
Economics
Manufacturing
Design of machinery
Thermal courses
Manufacturing Process
Industrial metallurgy
Mechanics of materials, Thermodynamics, Turbomachinery.
Python
Fluid mechanics
Kinematics of machinery
Basics of electrical and electronics engineering
thermal based courses
Fluid mechanics
Metrology
Design
Engineering Economic analysis
heat and mass transfer
KOM, DOM, thermal

List the courses that have WEAK relationship with the programme

No
Dynamics of machinery
Fluid mechanics
Engineering economic analysis
Power plant engineering
Nil
Industrial engineering
Industrial psychology
Humanities
Heat and mass transfer
Industrial metallurgy
Kom
Thermodynamics, Fluid Mechanics
C programming
Ethics class on semester 2

Industrial engineering courses
Human resource management Industrial psychology
DOM, Fluid mechanics
Human resources
Mathematical models
Automobile Engineering
Finite Element Analysis, Advanced Strength of Materials,
Mathematical modelling
none
Concepts of engineering design

Industrial psychology
Manufacturing Engineering
Concepts of engg design
Probability & Statistics Problem Solving & C Programming Calculus and its applications Complex variables and Transforms Industrial Psychology & Work Ethics
Mechanics of materials
Cnc programming Machine drawing
English languages oriented courses
Fluid mechanics, dynamics of machinery
Design of machine elements Dynamic of machinery
Industrial psychology, human resource management
Human Resource Management
Fluid Mechanics
Design of machine elements
BEEE
M1,M2
Design
Physics
Operation & testing
Industrial course
Operations Research
Engineering Economics
Kinematics of machinery, Power plant Economics
Engineering Graphics 2
C++
Kinematics of machinery
Design of Machine Elements
Strength of materials
Industrial Engineering
Strength of materials
Engineering economics
Industrial engineering I
--
supply chain management
FM, Turbo machinery

Rate the impact of Teaching-learning process in attaining the Programme Outcomes

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>11</td>
</tr>
<tr>
<td>Very Good</td>
<td>35</td>
</tr>
<tr>
<td>Good</td>
<td>19</td>
</tr>
<tr>
<td>Fair</td>
<td>6</td>
</tr>
</tbody>
</table>

Identify strengths of the Programme

Good infrastructure
Good syllabus
Subjects offered cover almost all branches of Mechanical Engineering. Good placement and higher studies record.
Power point presentation
Taught me how to handle a some real time problems on the aspects of mechanical engineering
Good syllabus
Good teaching and proper guidance
The involvement of faculty in teaching the course is high
Good theoretical knowledge
Laboratories and machines are good in condition to use.
Informative, practical knowledge
Good placements.
Encourages students to learn new concepts on their own. Improves visualisation and logical thinking. Introduces systematic approach to problem solving.
A better understanding of the whole mechanical engineering was taught in a understandable manner
Concepts
concepts
Experimental equipments
Clearly understand the courses and correlated with the real time applications with a help of our mechanical faculties.
Able to identify the problems in our day-to-day life
Vast scope
Framework of academic structure of evaluation
Interactive
Good availability of labs and facilities and adequate Material in the library related to the course,
Good placement cell
Faculties, JRF, laboratory technicians are very supportive and experienced.
Introduction to all the new concepts
Complete understanding
Effective technical skills and creativity skills
Well organised department, Support for the student, Flexibility in choosing electives
Wide areas for exposure
Easy to understand
Teaching methods and faculties,lab facilities
Quality of coaching is perfect
Good Availability of the faculty Availability of softwares and equipments
Good syllabus structure and faculty
Skilled faculties
Practical application shown by some faculty
Excellent mix of practical and theoretical knowledge simultaneously which allows us to apply and understand theoretical knowledge learnt into practical classes.
Good teaching
Interactive session
Coaching
Faculty
Special subjects such as DFMA
Manufacturing,Design
Practical knowledge
Teaching
Good communication
Outcomes will use in future
Opportunities
Good faculty
Makes us apply our knowledge practically
Conceptual understanding is high
Very well knowledge on machines and current technology advancement in mechanical Engineering field
Semester questions are good
Placement
Strength of department
provides a vast exposure.
Technical knowledge
Theres no strength to the program its just mugging up the materials and writing it in exams
Staffs
Knowledge enriching Syllabus
Subjects that i have studied
Easy
Good teching
Creative thinking on design

--
Basic concepts are explained clearly
different grades for different subjects
Good design knowledge.

Identify weaknesses of the Programme

No
Nothing
None
Nothing
More preference can be given to industrial engineering and lean manufacturing subjects.
Improper teaching methods
Still need to add more particulars in the syllabus it is not up to the level of competency
Program mainly insists on industry ready engineers than socially responsible engineers whom the world needs now
Not so practical.
Placement should be separate for both Psg tech and Psg itech.
Out dated syllabus. Needs more of classes on automation and softwares.
Faculty must be more knowledgeable
Application of the concepts learnt is absent. It only happens during the final year project. But that usually involves only a small amount of what we have learnt. Without constant application, we tend to forget the concepts with time.

Rarely the teaching was not understood for certain subjects and in-depth teaching was not done nothing

Quality of experimental setups and staffs
It's been good to keep the tool design course to 4th or 5th semester

Nil

Industrial connect with the curriculum
Less communication with students

Outdated curriculum, Sub-par faculty (only in some subjects), No emphasis on latest technologies Used in the market, Flawed Examination pattern, Very few Mechanical related Club activities in the campus

Outdated syllabus

Facilities in thermal laboratory is not upto the level when compared to facilities available in design field.
The gap between actual and conceptual can be bridged even more

Teaching method
Cause segregation

Lack of content delivery
Course allotment in the semester wise..Less important subjects..

No periodic calibration of lab equipments

#Lab was not able to be fully utilised because of the lab assistant's lack of knowledge about the subjects. #Subjects can be made quite practical with visual aids leading to effective understanding. #Real world problem can be discussed and worked out during class hours.

Ability to explain it clearly in the field of fluids
Assignments that have no learning outcomes. Laboratory evaluation.

None from administration side
More practical examples and explanation
Bookish knowleadge
None.

Staff not connected with students

Less monitoring of students

Not solving problems
NONE

Industrial

New technologies are not updated

Have same teachers for both g1&g2
Non related to future

Motivation for campus placements
Vast syllabus (some portions without having good reference books)
Too high portions
Practical exposure is less
Software knowledge
No thinking has to be used
Try to learn
Problem
Deals mostly with the creamy layer
Difficulty in learning
The structure and the total system of teaching and examinations are not up to the mark
Lack of co-ordination
Evaluation of Subject
Problems
Big
Clarification of doubts
--
Software training is not enough
no marks for attendance
Multidisciplinary engineering knowledge

Grade the quality of the programme on a scale of one to five

<table>
<thead>
<tr>
<th>Grade</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>1.4%</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>2.8%</td>
</tr>
<tr>
<td>3</td>
<td>21</td>
<td>29.6%</td>
</tr>
<tr>
<td>4</td>
<td>38</td>
<td>53.5%</td>
</tr>
<tr>
<td>5</td>
<td>9</td>
<td>12.7%</td>
</tr>
</tbody>
</table>

Your personal feedback for the department development
No
Good
Good department
Laboratory equipments needs to be updated. Supplementary exams must be conducted soon after the semester exams.
A separate 24x7 mechanical workshop for students to encourage their innovations.
Junior staff have to learn more stuff and convey in an experimental way
Please provide the tool design course on 4 or 5 or 6th semester and all students must know about our machine tool project. So please teach at least one hour for 3rd and final year student.
None
Industry-college collaboration can be improved for a sustainable student-society integrated development
Engineering is a skill and it cant be attained by putting emphasis on rote learning
additional design subject
Personal counseling can be given to students to choose their career, since not all their parents are educated and they may could not help to choose their career like higher studies, placements, civil service etc. Just about awareness and career opportunities can be spoken to students beyond workshops, seminars.
Functioning good
More practical exposure to labs and outside industries
The students should select the faculty. Lab lessons must taught correctly
#Avoiding expecting favours from students for doing the government funded project. #New innovations and new try is not encouraged and only the quantum of work is expected from faculty side in project which leads us to choose and work on safer and easier projects which cannot help us to develop our knowledge and skill. #Sending the important informations to the students side in the earliest...We cannot be able to utilise the opportunity if the information is shared in the last minute. #Inculturating more practical stuffs for effective understanding. (For eg-Problamatic subjects can be handled by explaining the problem with visual aidsor showing the particular thing in reality in class
Please change the tutor govind..a tutor must help students..but he makes us to involve in problems..
Kindly consider the removal of the 15mark presentation for the core subjects and replacing it a viva. This will push the students to spend time studying the books to understand concepts. It is possible to clear papers in this course without understanding any concepts.
Modify regulation to make less core subjects and laboratory in 7th semester so that students can concentrate on placements and project work.
Can improve problems solving methodology to everyone
Nothing
Give Interactive practical sessions
Can facilitate good internet for the students
Focus more on skill development program
Try to improve exams model (not easy to memorize the answer but easy to understand and write what we learnt.) Otherwise this is will be just like any college.

Nil

Very good department in sense of external activities, communication, etc.,

Have to invest much more into research. Faculties should make the subjects more interesting. Students should be given projects from second year and asked to show output. Subjects should be updated as per the new generation requirements with more of an emphasis on coding in subjects like Matlab

Be more student friendly in order for the students to participate more in studies rather than being arrogant

Concept should be explained with models and videos

I am content with all the mechanical subjects I have learnt. Please introduce more number of multidisciplinary subjects as electives due to evolution of industry 4.0.

Number of daily responses

![Graph showing number of daily responses](https://docs.google.com/forms/d/16FkQ79LJn3HgxunLGQUcc79G38ntnDbd-mP1XFiThVo/viewanalytics)
63 responses

Summary

Name of the programme

- BE Mechanical G1: 0 (0%)
- BE Mechanical G2: 1 (1.6%)
- BE Mechanical SW: 62 (98.4%)

Name (For verification only, will not be linked to your answers)

- Krishnamoorthy R
- Arunachalam
- Jayanth
- R R PRAVEEN RAJ
- Prem
- Rajvignesh
- Gunasekaran V
- Dharanish
- Adharsh J
- R Anand Kumar
- BALA SURESH P V
- Shankar Prabhu R j
- 14M627
- Prashanth s
- B. Thiruamalaikumar
- Benny
- P. Arivukkarasu
Arunpandian j
Manikandan R
Gaudham
SriNanda
Bharanikumar D
M.Karthick velan
Suresh
Sasikumar G
Xavier Raj R
kmk
Kowshik M
NIRANJAN G
Praveen
ANTO ALLEN
Sanjay Kumar S
Kaushik
Sakthi Selvamani SS
Shomesh Krishnan V
Surya
King
Vamsi Krishna
Varun
P.vivek
Prithivi
Hd
VISVARAM A
Dinesh
M SRI HARI
Prasahanth
Porselvan K
Tamil Selvan M
Jaykumar T
Rdx
Tharrun S D
Linga
K.mohamed Abdul Majeeth
M.Saravankumar
V. Praveen Kumar
P.R.Manimaran
Harshavardhan
Muthukumar P
Karthick velan
Manoj S c
T DHARANIDHARAN
M R BHARATHI KANNAN
Avinash

Roll No (For verification only, will not be linked to your answers)
14M624
14M638
15M904
14M629
15M908
14M607
14m620
14m640
14M640
14M643
15M907
15M906
14M602
14M604
14M610
14m650
Vijay perumal
14m636
14M660
14m645
14M606
14m608
14M628
14M616
14m654
14M611
14M622
14m655
14M642
14M601
Feedback on the attainment of Programme Outcomes (PO)

Engineering knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.

<table>
<thead>
<tr>
<th>Grade</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>11</td>
<td>17.5%</td>
</tr>
<tr>
<td>Very Good</td>
<td>20</td>
<td>31.7%</td>
</tr>
<tr>
<td>Good</td>
<td>23</td>
<td>36.5%</td>
</tr>
<tr>
<td>Fair</td>
<td>9</td>
<td>14.3%</td>
</tr>
</tbody>
</table>
Design/development of solutions: Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.

Conduct investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to prove valid conclusions.

Modern tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering, activities with an understanding of the limitations.
Professional Engineers are required to arm themselves with contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.

Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
complex engineering activities with large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

Project management and finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

Life-long learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

An ability to design, model, simulate and analyze mechanical and thermal systems using appropriate tools, techniques and materials.
An ability to select appropriate manufacturing processes and systems for engineering products by applying industrial engineering principles to achieve economy.

An ability to understand various standard practices pertaining to design, manufacturing, operations and testing.

List the courses that have STRONG relationship with the programme

SOM
Manufacturing process
Manufacturing process
Mechanics of materials
Manufacturing
Strength of materials
Dom, dots, mom, e mech, mp
Automobile
Tool design
DFMA, SOM, FEA
manufacturing, Design of machine element
Manufacturing process 1&2, strength of materials
Lean manufacturer
Manufacturing of Gears
Strength of materials and manufacturing technology
Design and thermal
Thermal engineering
Strength of materials, Design of machine elements, Manufacturing and inspection of gears,
Manufacturing process, Fluid mechanics
NA
Manufacturing Process
Thermal engineering, design of machine elements, engineering mechanics, design of
transmission system, kinematics and Dynamics of machineries
Manufacturing processes
Thermodynamics
Strength of Materials
Strength of materials, design of machine elements, design of transmission systems
Thermodynamics, fluid mechanics, strength of materials
Strength of materials, DFMA, FEA
Strength of materials
Manufacturing process, DFMA
Strength of material
Mechanical Engineering
FEA, DFMA, SCM,
Automobile
Production, Automobile
Engineering Mechanics, Thermodynamics, IC Engines
Thermal engineering
DOM, DOTS, KOM, MOM, DOME, MANUFACTURING
SOM, DFMA, FEA, MANUFACTURING PROCESS
Manufacturing
POWER PLANT
FINITE ELEMENT ANALYSIS
Design of machine elements, Design of transmission systems, mechanics of machines
SOM, DFMA, FEA
All core subjects
Heat and mass transfer, Design of Machine elements etc
Kom, dom, som
Design of Machine elements
Thermodynamics
Kniematics of machinery
Engineering mechanics
Fluid and thermal subjects, Design of machine elements and transmission systems
Strength of materials Fluid mechanics Thermodynamics Manufacturing
Automobile engineering
Thermal, Strength of material
DFMA & Operations Research

List the courses that have MEDIUM relationship with the programme

Turbomachinery
Thermal
CED
Thermal engineering
IPSE
IM, C programming
Mathematics
Thermal engineering
Thermal
Implant training
Kinematics of machinery
Heat and mass transfer
Finite element analysis
Powerplant engineering, thermodynamics, Finite element analysis
Strength of materials
Hmt
Industrial training cum lecture
DFMA
Heat and mass transfer, Thermal engineering, Finite element analysis
NA
Strength of materials
Power plant
Flexible manufacturing system
Heat and mass transfer
Industrial metallurgy
Industrial psychology, manufacturing engineering, refrigeration and airconditioning
Hydraulics and pneumatics
EVS
Manufacturing process
Engineering Design
Kinematics of machinery
IVCL, Implant Training - Not effectively utilized
Design course
Mechatronics
Heat and Mass transfer
Manufacturing technology
CNC, MATHS, MATERIAL SCIENCE ETC
Industrial Metallurgy, Environmental Science
Design
Fluid mechanics
Complex and variables
Korn
METALLURGY
Manufacturing processes, concepts of engineering design, lean manufacturing
HMT
Courses studied in first two semesters
None
Cnc
Industrial psychology
C+
Industrial psychology and work ethics
Engineering mechanics
Professional english
CNC and Robotics
Problem solving using C Industrial psychology
Internal combustion engines
Design of transmission systems
Fluid and turbomachinery
Nil

List the courses that have WEAK relationship with the programme

EVS
C programming
HMT
None
FMS
Heat mass transfer
Complex mathematics
Dfma
Kom dom power plant
Kinematics of machinery, dynamics of machinery
Industrial training
EEE
No subject
Applied chemistry
Kinematics of machinery, Dynamics of machinery, Thermodynamics, Power plant engineering
NA
Management courses
Heat and mass transfer
RAPID PROTOTYPING
Hydraulics and pneumatics
FEA
Mp1,kom,Dom
Chemistry laboratory
C program
Mathematics
Heat and mass transfer,
Management and other department basic courses
Project Management
-
Integral calculus
Probability and Statistics, CNC, Industrial Psychology.
Thermal course
CSE
Industrial Psychology
Environmental studies
Industrial psychology, English,EVS
Physics ,Chemistry
Design
Turbomachinery
Operation research
Dom
OPERATIONS RESEARCH
Psychology, value engineering, c programming
Power plany engineering
Electives
M 4, m5
Computer science
Management
Fluid mechanics
Basics of C
Industrial psychology
Industrial metallurgy
Material science
Basics of Electrical and Electronics engineering
Industrial visit cum lecture In plant training
Thermodynamics
Thermal engineering
Industrial metallurgy
Nil

Rate the impact of Teaching-learning process in attaining the Programme Outcomes

<table>
<thead>
<tr>
<th>Rating</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>10</td>
<td>15.9%</td>
</tr>
<tr>
<td>Very Good</td>
<td>22</td>
<td>34.9%</td>
</tr>
<tr>
<td>Good</td>
<td>22</td>
<td>34.9%</td>
</tr>
<tr>
<td>Fair</td>
<td>9</td>
<td>14.3%</td>
</tr>
</tbody>
</table>

Identify strengths of the Programme

Internship
Syllabus
Industrial training
Industrial exposure
Practical knowledge
Internship is an advantage. We get industrial exposure.
Internship
Class unity
NA
Industrial exposure hours will be most efficient with relevent to the subjects
Lot of practical knowledge & experience
Lean manufacturer
Practical learning, internships
Faculties
Industry training
Subjects
Internship, Lab facility
..
Good facility
Not applicable
Free time at morning so can do some other stuffs
None
Diversity of Subjects
Good teaching
Support from staffs, timings
Get the industrial knowledge
Nothing
Industrial training, but it is not upto the mark now. Curriculum need to be updated
Experienced faculties
Design
Easy to complete the degree than to obtain knowledge
All strengths
Teaching of Fundamentals is very good. Lab facilities are good.
2 month internship
More problem analysis, innovative Design and Development.
Deep learning
Industrial orientated
Arrangement of subject for each semester
Faculty
Manufacturing
Good learning
Student friendly
Industrial Training
Industrial training
Ic
MANUFACTURING PROCESSES
All the necessary courses are covered, practical knowledge
Industrial oriented
Core
Internships
Industry integrated learning
Strong mechanics
Knowledge
Teaching
Good teaching
Very well structured course plan
Industrial oriented training
Very good laboratory
Ability to sustain in current World

Identify weaknesses of the Programme

Timing
Timing
None
Staffs
This program can be completed in 4 years if planned appropriately
More repeated works
NA
no linear subjects at different semester
Maths
Showing partiality to particular students
Lack of knowledge of lab staffs
Faculty
Timing, Lab assistants and sandwich professor having lack of knowledge, biased professors,
Unwanted procedure for getting permission, Partiality between regular and sandwich students
..
New staffs
Not applicable
Teaching staffs
Late timing classes
More theoretical
Nothing
Five years of industrial training is some what waste of time instead you can allocate students to
do some simple fabrication works for their field works knowledge
Absence of able faculties in the department. Many fresh faculties are recruited immediately after
their masters, with no teaching experience or research experience. This affects in delivering the
course to the fullest extent.
Nothing
Faculties, Research facilities, lab facilities, absence of designing softwares that are relevant to
the industries, very minimum exposure to industrial engineering courses
Fresh facilities
Could be more effective
Lack of guidance and motivation
No weakness :)

Lacking Technology oriented upgradation. Multidisciplinary Courses Needed and it's Teaching could be improved. Awareness and Discussion about the innovations in Technology with respect to the subject could be introduced.

5 years can be made to 4 year

Less management oriented

Lack of practical knowledge

Theoretical

Allocation of staffs with poor knowledge

Labs

Design

No weakness

Industrial Training

Hands on training

Kom

CLASS HOURS SCHEDULE

Not up-to date courses offered

Faculties

Not effective usage of industry

Timings

5 years

Not up to date syllabi

College timings

Less time

Class timings

Labs and theory classes could have been made to be taught in the same semester for sandwich students

Order of subject in semesters

Timing of the classes

Grade the quality of the programme on a scale of one to five

https://docs.google.com/forms/d/13x7307xxEL2Wi3_AsA7pSyznCzo0xjGU9aZkL3sbXCw/viewanalytics
Least: 1 3 4.8%
 2 4 6.3%
 3 21 33.3%
 4 17 27%
Most: 5 18 28.6%

Your personal feedback for the department development

Nothing
Good
Good
Reduce the external works and reduce timings of class
Not up to the mark.
Increase the practical experience of the students to be give the advanced machineries to the labs
Please respect sandwich students
Change the timing for SANDWICH capable and knowledgable faculty is required. And also subjects should be made interesting and should be objective
Train students for good teamwork
1. Keep lab equipments in good condition. 2. Give some innovating courses. 3. Give one elective subject for every sem from third semester itself and allow us to take any electives on any department. 4. Make mandatory to learn programming languages, embedded designs and mechanical software. 5. Try to make a software related courses on every semester. 6. Must ensure every project done by students are worth. 7. Make free of cost to use any machines within the campus for doing project.
None
1. Laboratory equipment's should be perfect and also allow other department students to use it freely. 2. Staff should inspire each and every students for their innovative thinking. 3. Deal with students psychologically for their enormous improvements of their own and for the college's name. 4. Make every mechanical students to learns computer programmings and designing softwares, because it is important in future.
Need some interaction between HOD and students, try to conduct some meetings for students between HOD
Feedback loop can be improved through more frequent meetings with class representatives and HOD
Faculties must be replaced with people having deep knowledge about their subjects
Usage of labs for self practicing could be simplified.
Need to improve teaching staff with better teaching quality. Every one have good knowledge but poor in teaching
Improvement in providing facilities is needed
Pls assign staffs who are well versed in that subject and who are not partial with students update the syllabus to current trend. verify the syllabus and check it with international universities also train our staff to teach in better way... More hands on training should be given to sandwich students

Whats the point of feedback when you dont even make a single change..? Might as well you do the filling and save us time

First of all great thanks because before some years when I joined there is partiality between regular and sandwich students now there is no such partiality. And future is fully depends on the automation so if we include sensorics and electronic subject that will be useful for our future generations.

Can improve a bit

Mechanical

Number of daily responses
9 responses

View all responses Publish analytics

Summary

Dummy No (19MI--)
19MI44
19mi77
19MI30
19MI46
19MI40
19MI19
19MI86
19mi90
10

Feedback on the attainment of Programme Outcomes (PO)

Be able to apply inter-disciplinary knowledge and skills to the various functional areas of CIM.

![Pie chart showing percentages]

- Excellent: 1 (11.1%)
- Very Good: 2 (22.2%)
- Good: 6 (66.7%)
- Fair: 0 (0%)

Be able to model, analyze and integrate various manufacturing systems effectively for minimizing time to market.

- Excellent: 0 (0%)
- Very Good: 3 (33.3%)
- Good: 5 (55.6%)
- Fair: 1 (11.1%)
Actives of an organization.

- Excellent: 0 (0%)
- Very Good: 4 (44.4%)
- Good: 4 (44.4%)
- Fair: 1 (11.1%)

Be able to identify cost effective manufacturing solutions for sustainability, societal, environmental and safety aspects.

- Excellent: 0 (0%)
- Very Good: 3 (33.3%)
- Good: 6 (66.7%)
- Fair: 0 (0%)

Be able to pursue research systematically in the thrust areas of manufacturing and automation systems for enhancement of technology.

- Excellent: 1 (11.1%)
- Very Good: 4 (44.4%)
- Good: 4 (44.4%)
- Fair: 0 (0%)

Be able to uphold professional ethics and social responsibilities.

- Excellent: 2 (22.2%)
- Very Good: 4 (44.4%)
- Good: 2 (22.2%)
- Fair: 1 (11.1%)

Be able to communicate effectively the ideas and solutions related to CIM.

- Excellent: 2 (22.2%)
Be able to function effectively as an individual and as a team member in a multi-disciplinary environment.

- Excellent: 5 (55.6%)
- Very Good: 2 (22.2%)
- Good: 2 (22.2%)
- Fair: 0 (0%)

Be able to engage in life-long learning so as to adapt to the changes in needs of the society.

- Excellent: 4 (44.4%)
- Very Good: 4 (44.4%)
- Good: 1 (11.1%)
- Fair: 0 (0%)

List the courses that have STRONG relationship with the programme

- Mechatronics system design, Enterprise resource management, Internet of things, Industrial robotics
- IOT
 - Mechatronics system design, computer numerical controlled machines, Modern Manufacturing processes, Flexible Manufacturing System, Industrial robotics
 - ERP, FMS, IOT, MSD, DFMA, CIM
- Mechatronics, Robotics, IoT
- Robotics, IOT
- INTERNET OF THINGS
 - Manufacturing system design, robotics, iot
 - erp, cnc,

List the courses that have MEDIUM relationship with the programme
CNC machines and robotics, Flexible manufacturing system
Mechatronics
Design for manufacture and assembly, Geometric Modeling, Materials and Manufacturing Engineering, Components and Architecture of CIM
CNC, PRODUCT DEVELOPMENT, FEA,
ERP, FMS, DFMA
CNC, ERP, DFMA
ENTERPRISE RESOURCE PLANNING
CNC
fea

List the courses that have WEAK relationship with the programme
FEA
Product development and reverse engineering, Finite element manufacturing
Enterprise resource planning, Finite Element Analysis in Manufacturing, Product development and Reverse Engineering, Modeling and Analysis of Manufacturing systems,
NUMERICAL METHODS, IE LAB,
Geometric modeling, FEA, MAMS
FEA, PRODUCT DEVELOPMENT AND REVERSE ENGINEERING
ERP, fms
material science

Rate the impact of Teaching-learning process in attaining the Programme Outcomes

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>Very Good</td>
<td>3</td>
<td>33.3%</td>
</tr>
<tr>
<td>Good</td>
<td>6</td>
<td>66.7%</td>
</tr>
<tr>
<td>Fair</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

Identify strengths of the Programme
Exposure to ERP, DFMA makes us to understand the industry practices
all subject have theory concept
Similar to doing M.Tech in Mechanical engineering covers all the subjects except flow science papers
PRESENTATION, MINI PROJECTS, VISITING VARIOUS FACILITIES IN COLLEGE
Available resources
Development
AUTOMATION
Addquate professors
it is in relation ship with industry 4.0

Identify weaknesses of the Programme
Companies visiting the campus does not prefer CIM
Separate lab is need
Not so streamlined with specialisation of integration
LACK OF SKILL DEVELOPMENT TO MEET INDUSTRY EXPECTATIONS
Weak Syllabus
Knowledge
Some staff are not even teaching
No separate lab
poor placements

Grade the quality of the programme on a scale of one to five

<table>
<thead>
<tr>
<th>Grade</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>2</td>
<td>22.2%</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>44.4%</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>22.2%</td>
</tr>
<tr>
<td>Most</td>
<td>5</td>
<td>11.1%</td>
</tr>
</tbody>
</table>

Your personal feedback for the department development
No
MR.V.Vijay anand is targeting the students and reducing marks. Always demotivating the students and not teaching the syllabus. it feels hard to study at the time of examination
Set the syllabus little more analytical in addition to theoretical content in the papers. Eliminate design, industrial and lean related papers and increase count of integration related papers Advise students to take electives like MEMS, and other electronics based papers
THERE IS NO PG LAB FOR CIM. THE EXPERIMENTS IN FIST LAB AND RANE LAB ARE OUTDATED AND NEEDS TO BE REFURBISHED WITH LATEST EXPERIMENTS RELATED TO I4.0, IOT. STUDENTS FIND DIFFICULT TO GET INTERNSHIP/PROJECT IN COMPANIES DUE TO LACK OF CONTACTS, SOME COMPANIES GIVE IRRELEVANT AREAS OF PROJECT WORK SO PROJECT COMMITTEE SHOULD UNDERSTAND THE DIFFICULTIES FACED BY STUDENTS AND SHOULD GIVE PROPER GUIDANCE. FOR EXAMPLE, A STUDENT DID A
PROJECT OF DESIGNING A MACHINE. HE ONLY DO A PART OF WORK (LEARNING A NEW SOFTWARE OR A CONCEPT FROM OTHER DEPT) GIVEN BY THE COMPANY. BUT HE IS FORCED INDIRECTLY BY THE ACADEMIC SYSTEM TO EXPOSE AS THE WHOLE PROJECT IS DONE BY HIM. WITHOUT SKILLING THE STUDENT BY ACADEMIC AND EXPECTING TO PROJECT IN INDUSTRY LEVEL IS SO SILLY. SOME OF THE STUDENTS ARE FACED DIFFICULTIES DUE TO POLITICS BETWEEN STAFFS IN PROJECT PRESENTATIONS.

Placement opportunities should be more.

Try to upgrade the students. Don’t demotivate them.

Some Staffs are demotivating the students and they treating M.E students are waste when comparing to B.E, They make us irritating feel about the department

Please develop a separate lab with relevant softwares

improve placements by updating the syllabus,

Number of daily responses
14 responses

View all responses Publish analytics

Summary

Dummy No (19ED--)
19ED67
19ED69
19ED60
19ED57
19ED71
19ED56
19ED51
19ED68
19ED70
19ED52
19ED58
19ED63
19ED54
19ED53

Feedback on the attainment of Programme Outcomes (PO)

Be able to acquire in depth knowledge of design concepts and application of the same to solve complex engineering design problems.

- Excellent: 6 (42.9%)
- Very Good: 3 (21.4%)
- Good: 5 (35.7%)
- Fair: 0 (0%)

Be able to interpret and analyze design data to conduct investigation of complex design problems using research based knowledge and various design principles to arrive at valid conclusions.
Be able to find safe and cost effective solutions in the development of mechanical systems taking into consideration sustainability, societal, environmental and public health aspects.

Be able to function effectively as an individual and as a team member in executing and managing projects pertaining to engineering design as well as in multi disciplinary environment.

Be able to identify, select and apply appropriate techniques, resources and design tools to model and analyze engineering design problems.

Be able to uphold professional ethics and social responsibilities consistent with their roles as design engineers.
Be able to communicate effectively on complex design problems and disseminate the results by oral and written communication

- Excellent: 7 (50%)
- Very Good: 3 (21.4%)
- Good: 3 (21.4%)
- Fair: 1 (7.1%)

Be able to undertake research systematically in the thrust areas of engineering design and understand the impact of such solutions in the development of society.

- Excellent: 6 (42.9%)
- Very Good: 4 (28.6%)
- Good: 3 (21.4%)
- Fair: 1 (7.1%)

Be able to engage in life-long learning so as to adapt oneself to the change in needs of the society and have an open mind for learning from mistakes.

- Excellent: 6 (42.9%)
- Very Good: 6 (42.9%)
- Good: 2 (14.3%)
- Fair: 0 (0%)

List the courses that have STRONG relationship with the programme

- Finite Element Analysis, Composites, Vibration
- Fea
- Finite Element Analysis
Advanced Finite Element Analysis, Vibration, Mechatronics, Product Development and Reverse Engineering, Design for Manufacturing and Assembly,
Advanced Finite Element Analysis, Design for Manufacture and Assembly,
Tribology, Applied Elasticity and plasticity
FEA, APPLIED ELASTICITY AND PLASTICITY, MECHANISM AND ROBOT KINEMATICS
FEA, VIBRATION, DESIGN COURSES
Advanced finite element analysis
Applied numerical analysis, Concept of Engineering design, Machinery Vibration and Diagnostics, Industrial Tribology, Advanced Finite Element Analysis, Design for Manufacture and Assembly, Computer Aided Engineering Laboratory, Product Development and Reverse Engineering, Design of Automotive Systems, Production Tool Design, Computational Fluid Dynamics
Vibration applied numerical analysis Finite element analysis
Finite element analysis, mechanical vibrations
Finite element analysis

List the courses that have MEDIUM relationship with the programme

DFA, DFMA
Tribology
Fracture Mechanics
Applied Numerical Analysis, Design for failure Analysis, Composite Materials, Robot Kinematics Design of Automotive systems, Industrial Design
PDRE
INDUSTRIAL DESIGN
KINEMATICS, CFD
Applied numerical analysis
Composite materials
Robot kinematics and machinery, advanced strength of materials
Industrial design

List the courses that have WEAK relationship with the programme

Industrial Design, AEP
Industrial design
Engineering drawing
Industrial Tribology, Theory of Elasticity and Plasticity
Everything is good
Composites, design for failure analysis
Internet of Things
NIL
ASOM
Industrial tribology
NA
Design for manufacturing and assembly
geometric modelling
Applied numerical methods

Rate the impact of Teaching-learning process in attaining the Programme Outcomes

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>5</td>
<td>35.7%</td>
</tr>
<tr>
<td>Very Good</td>
<td>7</td>
<td>50%</td>
</tr>
<tr>
<td>Good</td>
<td>2</td>
<td>14.3%</td>
</tr>
<tr>
<td>Fair</td>
<td>0</td>
<td>0%</td>
</tr>
</tbody>
</table>

Identify strengths of the Programme

Curriculum
Analytical thinking
Good to design
Covers most of the Engineering Design area
Quality professors and Supportive department
Faculty
Well qualified professors, Industry based learning
LEARN NEW THINGS ABOUT THE DESIGN MODULE
Good syllabus & teaching faculty
Has basics in 1st semester
Application based programme, knowledge gaining
Application oriented
Application oriented, problem solving
Faculties
Identify weaknesses of the Programme

Nil
Less time
Lacking in advanced level
Lacks in trending subjects and new technologies.
More practical learning is needed
No
More Industry based assignments and learning
NEED EXTRA COURSES
Need more practical knowledge
More lab courses for hands on experience needed
NA
Vast syllabus
Duration

Grade the quality of the programme on a scale of one to five

Least: 1 0 0%
2 0 0%
3 0 0%
4 8 57.1%
Most: 5 6 42.9%

Your personal feedback for the department development

Nil
Goal oriented teaching must be implemented
Hands on experiment and industrial approach
Energy saving and vibration related topics should be added.
Everything is good
Make the process to use lab facility easy
Please give more industrial based problems for Masters Thesis
VERY GOOD
Increase practical knowledge
Can allocate separate labs such as carpentry etc., for project purpose alone
One or two subjects were taught without explaining the specific application and their usage.
Assignments can be made more like real problem solving, so that students can know the use that
subject in solving real world problems (some subject assignments were such, while others were not), instead of taking seminars. Staff were very helpful and were open to hear our concerns.
Engineering design faculties are very good and they are helpful.
Doing good job
Best'u department in the field...

Number of daily responses

![Graph showing number of daily responses.](https://docs.google.com/forms/d/1QE62_mNaeiOEiiUH4v3wRO1sQVr7QiAbJMM_cE3jVuU/viewanalytics)
14 responses

View all responses Publish analytics

Summary

Dummy No (19EE--)

19MN64
19MN44
19MN22
19MN88
17MN63
19MN77
19MN06
19MN39
17MN42
19mn89
19MN72
19MN01
19mn22
19MN50

Feedback on the attainment of Programme Outcomes (PO)

Be able to acquire in-depth and practical knowledge on renewable energy concepts and apply the same to develop innovative energy technologies.

Excellent 2 14.3%
Very Good 7 50%
Good 5 35.7%
Fair 0 0%

Be able to collect, interpret and analyze energy information to achieve energy conservation.
Be able to develop feasible solutions on energy systems for sustainable energy utilization in consideration of social, environmental and health aspects.

Be able to engage as an individual and as a team member to solve complex engineering problems in multi-disciplinary environments.

Be able to identify, select and apply appropriate tools and techniques for the implementation of energy projects.

Be able to uphold professional ethics and social responsibilities consistent with their roles as energy engineers.
Be able to communicate effectively on the impact of energy, economy and environment on energy projects.

Be able to undertake research systematically in the thrust areas of energy system development and understand the impact of such solutions for the improvement of society.

Be able to engage in life-long learning and appreciate the need for continual self-development.

List the courses that have STRONG relationship with the programme

Smart grid
Fuel cell, Renewable energy, Thermal energy storage system
List the courses that have MEDIUM relationship with the programme

Renewable energy
CFD, HVAC
Engineering Economic
Industrial
Green building
Instrumentation for Energy Systems, Electrical Energy Conservation and Manage
Biofuels
ELECTRICAL SYSTEMS
numerical methods
Solar
INSTRUMENTATION FOR ENERGY SYSTEMS, THERMAL ENERGY CONSERVATION AND MANAGEMENT
SOLID AND LIQUID WASTE MANAGEMENT
APPLIED NUMERICAL ANALYSIS
Electrical energy conservation

List the courses that have WEAK relationship with the programme

Thermal energy system
Waste recycling, Nanotechnology
Concepts of energy engineering
Solar
None
Excellent 3 21.4%
Very Good 4 28.6%
Good 6 42.9%
Fair 1 7.1%

Rate the impact of Teaching-learning process in attaining the Programme Outcomes

Identify strengths of the Programme

CFD
Good teaching
Curriculum is industry oriented
Solar energy
Work in more real time projects

VERY GOOD
Teaching
REDUCE THE USE OF FOSSILS
Good syllabus
AUDITING, RENEWABLE KNOWLEDGE
Syllabus of the program has industrial and practical enclosure softwares available in the premises
Lab and library facilities

Identify weaknesses of the Programme

None
Poor lab practice
Poor and non punctual teachers
Lack of subject division in renewable energy
Lab
NOTHING
Communication
MORE INVENTIONS SHOULD BE MADE.
Not enough motivation
Solar
NONE
No details about advance techniques
Lab sessions

Grade the quality of the programme on a scale of one to five

![Bar chart showing grades]

<table>
<thead>
<tr>
<th>Grade</th>
<th>Count</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0%</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>7.1%</td>
</tr>
<tr>
<td>3</td>
<td>4</td>
<td>28.6%</td>
</tr>
<tr>
<td>4</td>
<td>4</td>
<td>28.6%</td>
</tr>
<tr>
<td>5</td>
<td>5</td>
<td>35.7%</td>
</tr>
</tbody>
</table>

Your personal feedback for the department development

Improve the lab facility..arrange lab assistant
Teachers should teach the subjects in much more depth and be proper to class on time
Need to concentrate more on renewable energy
Nothing
To appoint any lab assistant
FOCUS MORE ON ENERGY AUDITING .
Super
ENERGY CONSERVATION WITH NEW TECHNIQUES SHOULD BE ADOPTED
Increase the standards of laboratory

Laboratory

Need a lab assistant for maintaining the CFD laboratory

Practical teaching and developing knowledge and care about nature and environment... More advance techniques to control pollution, water scarcity etc., update labs and appoint lab assistance

Good

Number of daily responses
11 responses

Summary

Dummy No (19IE--)
19IE45
19IE33
78
19IE72
19IE63
19IE92
19IE21
19IE56
19IE88
19IE36
19IE620

Feedback on the attainment of Programme Outcomes (PO)

Be able to acquire in depth knowledge of Industrial Engineering concepts and application of it to formulate and solve complex Industrial engineering problems with the knowledge of contemporary issues.

- Excellent: 4 (36.4%)
- Very Good: 4 (36.4%)
- Good: 3 (27.3%)
- Fair: 0 (0%)

Be able to interpret and analyze data to conduct investigation of management problems using research based knowledge and various industrial engineering principles to arrive at valid conclusions.

- Excellent: 3 (27.3%)
- Very Good: 5 (45.5%)
- Good: 3 (27.3%)
in the development of systems taking into consideration quality, sustainability, societal, environmental and public health aspects.

Be able to function effectively as an individual and as a team member in executing and managing projects pertaining to engineering management as well as in multi-disciplinary environment.

Be able to identify, select and apply appropriate techniques, resources and industrial engineering tools to model and analyze industrial engineering problems.

Be able to uphold professional ethics and social responsibilities consistent with their roles as industrial engineers.
Be able to undertake research systematically in the thrust areas of industrial engineering and understand the impact of such solutions in the development of society.

Be able to engage in life-long learning so as to adapt oneself to the change in needs of the society and have propensity for continuous learning.

List the courses that have STRONG relationship with the programme

Operations Management Supply Chain Management Operations Research
six sigma, lean engineering
Operations management
Statistical Process Control and Reliability Engineering, Project management, Value Engineering, Operations management, Supply Chain Management, Simulation modelling and analysis,
Enterprise Resource Planning, Lean Six Sigma, Advanced Optimisation Technique, Quality Engineering and Ergonomics, Industrial Scheduling and Safety Engineering and Environmental Management System

Lean six Sigma, operations management, supply chain management, product cost estimation, project management, industrial safety.

Lean Six sigma, Statistics, Economics

Advance optimisation techniques

Supply chain management, Industrial scheduling, Ergonomics, Lean six sigma, Operation management

Project management

Advanced Optimisation Techniques, Supply Chain Management, Engineering Economics.

Enterprise Resource Planning

Supply chain management

List the courses that have MEDIUM relationship with the programme

Marketing Management

accounts

Quality engineering

Product Analysis and Cost Optimisation, Modelling and Analysis of Advanced Manufacturing systems

Value engineering, engineering economics, statistics and reliability engineering.

Supply Chain Management, Advanced optimization techniques

Lean six sigma

Safety engineering, Engineering economics

AOT

Ergonomics

Project management

List the courses that have WEAK relationship with the programme

Industrial Management and Games

design engineering

All are relevant

Engineering Economic Analysis

Advanced optimisation techniques, industrial scheduling.

Quality engineering and ergonomics

Value engineering

Advanced optimization technique

Nothing

Manufacturing Engineering
Advanced optimization techniques

Rate the impact of Teaching-learning process in attaining the Programme Outcomes

- Excellent: 4 (36.4%)
- Very Good: 5 (45.5%)
- Good: 2 (18.2%)
- Fair: 0 (0%)

Identify strengths of the Programme

- Faculties
 Able to solve many industry related problems.
- We can work in any kind of industry
- Able to apply the theoretical concepts in the industry with ease
- Seminar, project work, assignment
- Industrial oriented
- Placements
- Good leadership skill, team management
- Supply chain
- Optimisation
- Relate to all fields

Identify weaknesses of the Programme

- No industrial visits
- Unable to find that the implemented solution is really optimum.
- Can you tell me the difference between IE and MBA
- Poor Placements and Internships
- Courses like advance optimisation techniques which does not have much relationship with the programme
- Less placements
- Concentration of analytic path in supply chain management is less
- Advanced optimization technique
- Advanced technologies
- Nil
- Less practical classes
Grade the quality of the programme on a scale of one to five

Least: 1 0 0%
2 1 9.1%
3 3 27.3%
4 6 54.5%
Most: 5 1 9.1%

Your personal feedback for the department development

Industrial collaborations

Staffs need to be more lenient in giving assignment and also must provide students with some freedom.

Need to evolve.

Need to focus more on placements and internships. Till now we are getting internship without stipend and no placement in a reputed company. I request you to please focus on these problems faced by the students.

Some staffs should be giving training to behave with students.
Very good

Good

Please provide placement training related to our subjects.

Please give less assignments and teach the full subject and arrange placements

Nil

Arrangement of more internships and industrial visits for the students

Number of daily responses
Programme Name: BE Production Engineering

Attainment of Programme Outcomes through Exit Survey for the Batch: 2015-19

PO1

Engineering Knowledge: Apply the Knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

PO2

Problem analysis: Identify, formulate, review research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural science and engineering sciences.

PO3

Design/Development of Solutions: Design solutions for complex engineering problems and design systems components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.
PO4

Conduct Investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information of the valid conclusions.

PO5

Modern tool usage: Create, select and apply appropriate techniques resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6

The Engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and culture issues and the consequent responsibilities relevant to the professional engineering practice.

PO7

Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.

PO8

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
PO9

Individual and Team work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.

![Pie chart with percentages]

PO10

Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentation, and give and receive clear instructions.

![Pie chart with percentages]

PO11

Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.

![Pie chart with percentages]

PO12

Life-long Learning: Recognize the need for, and have the preparation and ability to engage independent and life-long learning in broadest context of technological change.

![Pie chart with percentages]

PSO1

Graduates will demonstrate the ability to improve a production process or a system that meets desired specification and requirements.

![Pie chart with percentages]
PSO2

Graduates will demonstrate their ability to select a manufacturing process or a sequence of manufacturing process to manufacture a part or given component according to the design specifications.

PSO3

Graduates will be familiar with engineering software and equipment as practiced in manufacturing industry to formulate and solve a real time problems and develop products that are eco-friendly while working with multidisciplinary teams.

Overall Programme Outcomes (POs)

Overall Programmes Specific Outcomes (PSOs)
Programme Name: BE Production Engineering (SW)

Attainment of Programme Outcomes through Exit Survey for the Batch: 2014-19

PO1

Engineering Knowledge: Apply the Knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

![Pie chart for PO1](image)

PO2

Problem analysis: Identify, formulate, review research literature and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural science and engineering sciences.

![Pie chart for PO2](image)

PO3

Design/Development of Solutions: Design solutions for complex engineering problems and design systems components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.

![Pie chart for PO3](image)
PO4

Conduct Investigations of complex problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information of the valid conclusions.

PO5

Modern tool usage: Create, select and apply appropriate techniques resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.

PO6

The Engineer and society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and culture issues and the consequent responsibilities relevant to the professional engineering practice.

PO7

Environment and sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
PO8

Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.

PO9

Individual and Team work: Function effectively as an individual, and as a member or leader in diverse teams and in multidisciplinary settings.

PO10

Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentation, and give and receive clear instructions.

PO11

Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to ones own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
PO12

Life-long Learning: Recognize the need for, and have the preparation and ability to engage independent and life-long learning in broadest context of technological change.

PSO1

Graduates will demonstrate the ability to improve a production process or a system that meets desired specification and requirements.

PSO2

Graduates will demonstrate their ability to select a manufacturing process or a sequence of manufacturing process to manufacture a part or given component according to the design specifications.

PSO3

Graduates will be familiar with engineering software and equipment as practiced in manufacturing industry to formulate and solve a real time problems and develop products that are eco-friendly while working with multidisciplinary teams.
Overall Programme Outcomes (POs)

- Satisfied: 16%
- Good: 41%
- Excellent: 43%

Overall Programmes Specific Outcomes (PSOs)

- Satisfied: 10%
- Good: 46%
- Excellent: 44%
Programme Name: ME Manufacturing Engineering

PO-A
Post graduates will apply the knowledge acquired in mathematics, science, and engineering to understand and to solve the problems related to manufacturing.

PO-B
Postgraduates will demonstrate their ability to use modern equipment and technology that can be applied to improve manufacturing systems and processes with industry participation.

PO-C
Postgraduates will identify the need of automation and demonstrate ability to automate manufacturing systems.

PO-D
Post graduates will be encouraged to have out of box thinking in continuous improvement of manufacturing processes with integration of design systems.
PO-E
Postgraduates will be motivated to become entrepreneurs

PO-F
Postgraduates will be capable of developing new manufacturing systems and assessing the feasibility from technical, financial, and social perspectives

PO-G
Postgraduates will be mentored in their areas of interest and will demonstrate abilities to communicate their research outcomes in compliance with ethical standards

PO-H
Postgraduates can pursue their career with manufacturing industries in supporting manufacturing activities and in the area of research and development
Overall POs

Question 1
What is your overall satisfaction with your education at PSG Tech?

Question 2
Placement initiatives/preparations/activities/results

Question 3
ME MFG curriculum
Question 4
Degree of academic challenge

Question 5
Development of soft skills

Question 6
Faculty’s concern about student’s learning and development

Question 7
Effectiveness of the teaching learning processes in the department
Question 8

The knowledge and skills acquired in the laboratory are sufficient to complement the theoretical course content.

Question 9

The knowledge gained and the skills acquired have made you confident to become an entrepreneur.

Question 10

The knowledge gained and skills acquired have made you confident to pursue higher studies/research.

Question 11

Library facilities (books, online journals, e books, videos etc.)
Question 12
Co-curricular activities (conference, association, etc.)

Question 13
Internet facilities

Question 14
Financial support opportunities (scholarship)

Question 15
Would you recommend ME MFG programme at PSG TECH to your relative/friend?
Question 16

Where do you see yourself 10 years from now?

Overall Student Experience
Programme Name: ME Virtual Prototyping & Digital Manufacturing

Programme Outcomes (POs)

a. Postgraduates will apply mathematical principles used in scientific and engineering data visualization related problems of science and engineering.

b. Postgraduates will demonstrate their ability to use digital technologies in modeling, simulation, visualization and synthesizing digital mock up of products/systems.

c. Postgraduates will demonstrate their ability to create virtual environments for immersive/interactive visualization of data related to products/environments using the knowledge on computer graphics and virtual reality.

d. Postgraduates can pursue their career with organizations in supporting new product development activities in a concurrent manner and in the area of research and development.

e. Postgraduates will use the platform of object oriented computing and generate knowledge based engineering solutions for business process automation and data transfer.

f. Postgraduates will demonstrate their abilities to communicate research outcomes.

g. Postgraduates will demonstrate necessary skills to become entrepreneurs.

Atainment of Programme Outcomes through Exit Survey for the Batch - 2017-19

<table>
<thead>
<tr>
<th>LIST OF PO's</th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
</tr>
</thead>
<tbody>
<tr>
<td>LEVEL OF ATTAINMENT</td>
<td>E</td>
<td>G</td>
<td>S</td>
<td>E</td>
<td>G</td>
<td>S</td>
<td>E</td>
</tr>
<tr>
<td>TOTAL NUMBER</td>
<td>1</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PERCENTAGE ATTAINMENT</td>
<td>25%</td>
<td>75%</td>
<td>0%</td>
<td>0%</td>
<td>10%</td>
<td>0%</td>
<td>5%</td>
</tr>
</tbody>
</table>

Atainment of POs through Exit Survey - Batch 2017-19

Atainment of POs through Exit Survey - Batch 2017-19
Programme Name: ME Product Design & Commerce

Programme Outcomes (POs):

a) Postgraduates will understand the engineering and commercial aspects of the product throughout its lifecycle and their impact on society.

b) Postgraduates will be capable of assessing the feasibility of developing a new product from technical, financial and social respective.

c) Postgraduates will develop work flows to work in concurrent engineering environment to expedite product development process.

d) Postgraduates can work through the various cost/benefit tradeoff in various design and manufacturing phases and come up with valid solutions.

e) Postgraduates will improve quality in product design by being able to practice design for reliability, manufacturability and maintainability.

f) Postgraduates will understand and implement ergonomic principles to improve product design.

g) Postgraduates will understand the platform of object oriented computing and able to generate codes/programs for business process automation and data transfer.

h) Postgraduates will demonstrate capabilities in developing complex and higher geometry curves and surfaces used in product design.

i) Postgraduates will have the knowledge of reverse engineering, rapid prototyping and various engineering materials for Product Design.

j) Postgraduates will be able to use the principles of Computer Aided Engineering and relevant software for simulations.

k) Postgraduates will be equipped with the knowledge to become entrepreneurs.

l) Postgraduates will be groomed in their areas of interest and will demonstrate abilities to communicate their research outcomes.

m) Postgraduates can pursue their careers with OEMs in supporting new product development activities and in the area of Research and Development.
Name of the Programme : BE – Robotics and Automation

EXIT FEEDBACK (Consolidated from 61 students)

<table>
<thead>
<tr>
<th>Programme Outcome / Programme Specific Outcome</th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>P01 Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.</td>
<td>39.34%</td>
<td>42.6%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>P02 Identify, formulate, research literature, and analyse complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences</td>
<td>40.9%</td>
<td>40.9%</td>
<td>18.1%</td>
<td></td>
</tr>
<tr>
<td>P03 Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations</td>
<td>46%</td>
<td>37.7%</td>
<td>13%</td>
<td>3.2%</td>
</tr>
<tr>
<td>P04 Conduct investigations of complex problems using modern computational concepts and tools</td>
<td>37.7%</td>
<td>42.6%</td>
<td>19.7%</td>
<td></td>
</tr>
<tr>
<td>P05 Create, select and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.</td>
<td>47.5%</td>
<td>=29.5%</td>
<td>23%</td>
<td></td>
</tr>
<tr>
<td>P06 Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.</td>
<td>44.3%</td>
<td>37.7%</td>
<td>18%</td>
<td></td>
</tr>
<tr>
<td>P07 Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development</td>
<td>49.2%</td>
<td>34.4%</td>
<td>16.4%</td>
<td></td>
</tr>
<tr>
<td>Programme Outcome / Programme Specific Outcome</td>
<td>Excellent</td>
<td>Very Good</td>
<td>Good</td>
<td>Fair</td>
</tr>
<tr>
<td>--</td>
<td>-----------</td>
<td>-----------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>P08 Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice</td>
<td>47.5%</td>
<td>34.4%</td>
<td>18.1%</td>
<td></td>
</tr>
<tr>
<td>P09 Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.</td>
<td>49.2%</td>
<td>29.5%</td>
<td>21.3%</td>
<td></td>
</tr>
<tr>
<td>P010 Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.</td>
<td>49.2%</td>
<td>29.5%</td>
<td>21.3%</td>
<td></td>
</tr>
<tr>
<td>P011 Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.</td>
<td>44.3%</td>
<td>42.6%</td>
<td>11.5%</td>
<td>1.6%</td>
</tr>
<tr>
<td>P012 Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.</td>
<td>45.9%</td>
<td>37.7%</td>
<td>13.1%</td>
<td>3.3%</td>
</tr>
<tr>
<td>PS01 Design and develop robotic and automation systems for industry and service applications.</td>
<td>47.6%</td>
<td>39.3%</td>
<td>9.8%</td>
<td>3.3%</td>
</tr>
<tr>
<td>PS02 Explore the relationship between robots and society, and the implications for the economy human health, and safety.</td>
<td>50.8%</td>
<td>39.3%</td>
<td>8.2%</td>
<td>1.7%</td>
</tr>
</tbody>
</table>

2) List the courses that have STRONG/WEAK relationship with the programme.

<table>
<thead>
<tr>
<th>STRONG</th>
<th>WEAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMTS</td>
<td>KDM</td>
</tr>
<tr>
<td>Power Electronics</td>
<td>PED</td>
</tr>
<tr>
<td>Vision System</td>
<td>ML</td>
</tr>
<tr>
<td>SOM</td>
<td>FSR</td>
</tr>
<tr>
<td>AI</td>
<td>Entrepreneurship</td>
</tr>
<tr>
<td>Renewable Energy</td>
<td>EDC</td>
</tr>
<tr>
<td>TIA</td>
<td>LIC</td>
</tr>
</tbody>
</table>

3) Rate the impact of Teaching – learning process in attaining the Programme Outcomes

Excellent -27 = 44.5%
Very Good - 23= 37.8%
Good - 10=16%
Fair 1 = 1.7%
4) Identify strengths / weaknesses of the Programme

<table>
<thead>
<tr>
<th>STRENGTH</th>
<th>WEAKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Good Subject handling</td>
<td>Important Courses are listed under electives</td>
</tr>
<tr>
<td>New Courses are introduced</td>
<td>Cannot learn deeply</td>
</tr>
<tr>
<td>Easy to understand</td>
<td>Only basic knowledge gained in all fields</td>
</tr>
<tr>
<td>Combined knowledge in many fields</td>
<td>Lab teaching is less</td>
</tr>
<tr>
<td>Curriculum</td>
<td>Lab Equipment</td>
</tr>
<tr>
<td>Experienced teachers</td>
<td>Mini projects</td>
</tr>
<tr>
<td>Industry oriented syllabus</td>
<td>Project evaluation</td>
</tr>
<tr>
<td>Practical classes</td>
<td>Staff & Syllabus</td>
</tr>
<tr>
<td>Good Faculty</td>
<td>Grading system</td>
</tr>
<tr>
<td>Guidance for individual students</td>
<td>Based on Robotics, AI can be improved</td>
</tr>
<tr>
<td>Course outcome planned and executed correctly</td>
<td>More practical sessions required</td>
</tr>
<tr>
<td>Projects and innovations</td>
<td>Vast syllabus</td>
</tr>
<tr>
<td>Approachable faculty</td>
<td></td>
</tr>
<tr>
<td>Learning resources are good</td>
<td></td>
</tr>
<tr>
<td>Accessibility of lab</td>
<td></td>
</tr>
</tbody>
</table>

5) Grade the quality of the programme on a scale of one (least) to five (most)

Grade 1 – 2 / 61 = 3.3%
Grade 2 – 2 = 3.3%
Grade 3 – 5/61 = 8.1%
Grade 4 – 24/ 61 = 39.3%
Grade 5 – 28 / 61 = 46%
Department of Textile Technology
Programme outcome attainment(%) based on Exit Survey

Programme: **B.Tech Textile Technology**
Academic Year: 2018-2019 (Passed out)

Impact of Teaching-Learning process in attaining the Programme Outcomes: **80.68%**
Quality of the programme on a scale of one (least) to five (most): **4.09**

Programme: **M.Tech Textile Technology**
Academic Year: 2018-2019 (Passed out)

Impact of Teaching-Learning process in attaining the Programme Outcomes: **92.8%**
Quality of the programme on a scale of one (least) to five (most): **4.71**
2012-2015 Batch:
The students expressed that though the programme was tightly packed with core courses, the knowledge they gained through these courses helped them to easily get admission into any of the PG programme they aspired for and had also gained confidence to face the interview panel when it came to placements.

2014-2017 Batch:
The students expressed that the programme gave them enough foundation for a multidisciplinary curriculum which gave them confidence to pursue PG programme in either of the following streams: Mathematics, Physics, Chemistry, Computer science and Business and Administration. They were happy with the tutor ward system which made them feel close to the department.

2015-2018 Batch:
The students expressed that the overall programme outcome was good in the sense that they had a good foundation in all the three disciplines, however, each one had specified few courses as their strengths as per individual interests. They expressed their feeling towards expanding and upgrading the computer science laboratory which they felt was a shortage at present.

2016-2019 Batch:
The students expressed that the core knowledge that had be gained all the three disciplines viz., mathematics, physics and chemistry was achievable because of the structure of the curriculum. They felt that the though the schedule was tight, it was a complete package which helped them to prepare well for the various entrance exams either to pursue their higher studies, government exams or placements. The extracurricular activities helped them to develop their leadership qualities, team spirit, planning, finance management and coordination. They felt that their three year experience in the campus by all means has prepared them to face their future with confidence and courage.
DEPARTMENT OF BIOTECHNOLOGY

EXIT FEEDBACK - CONSOLIDATED

Name of the Programme : B.TECH - BIOTECHNOLOGY
Batch : 2015-19
Number of students
Provided exit feedback : 46

Feedback on the attainment of Programme Outcomes (PO)
(Select the appropriate level in which the PO’s are met)

<table>
<thead>
<tr>
<th>PO</th>
<th>Programme Outcome</th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>The graduates will be able to apply knowledge of mathematics, sciences and engineering</td>
<td>7</td>
<td>20</td>
<td>18</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>The graduates will have broad understanding of life science technologies</td>
<td>10</td>
<td>22</td>
<td>13</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>The graduates will be knowledgeable about contemporary developments and technological challenges</td>
<td>8</td>
<td>16</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>D</td>
<td>The graduates will demonstrate ability to conduct experiments, collect, analyze and interpret data</td>
<td>12</td>
<td>29</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>The graduates will be able to design a process, a product or a system within constraints of cost, social relevance, safety, economics, ethics, environment and sustainability</td>
<td>10</td>
<td>25</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>F</td>
<td>The graduates will be effective in multi-disciplinary teams in biosystem design and development, drug discovery, and process optimization</td>
<td>6</td>
<td>21</td>
<td>16</td>
<td>3</td>
</tr>
<tr>
<td>G</td>
<td>The graduates will be able to participate and contribute to biotechnological problems at the frontier</td>
<td>13</td>
<td>22</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>The graduates will display professional and ethical behavior</td>
<td>19</td>
<td>19</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>The graduates will be able to communicate professionally</td>
<td>22</td>
<td>13</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>The graduates will display skills required for continuous learning and professional upgradation</td>
<td>17</td>
<td>17</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>K</td>
<td>The graduates will be able to adapt to changing professional and skill requirements</td>
<td>17</td>
<td>17</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>L</td>
<td>The graduates will be able to plan, formulate, execute and manage projects in the domain of life sciences, bioprocess and bioinformatics</td>
<td>13</td>
<td>22</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>
1) List the courses that have **STRONG/WEAK** relationship with the Programme

<table>
<thead>
<tr>
<th>STRONG</th>
<th>WEAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molecular Biology</td>
<td>Engineering Graphics</td>
</tr>
<tr>
<td>Genetic Engineering</td>
<td>Basics of EEE</td>
</tr>
<tr>
<td>Bioinformatics</td>
<td>C programming</td>
</tr>
<tr>
<td>Immunology</td>
<td>C++ programming</td>
</tr>
<tr>
<td>Biomolecules</td>
<td>Laplace and Fourier Transform</td>
</tr>
<tr>
<td>Genetics</td>
<td>Thermodynamics</td>
</tr>
<tr>
<td>Developmental Biology</td>
<td></td>
</tr>
<tr>
<td>Biopharmaceuticals</td>
<td></td>
</tr>
</tbody>
</table>

2) Rate the impact of Teaching-learning process in attaining the Programme Outcomes

<table>
<thead>
<tr>
<th>Impact of teaching</th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of students given feedback</td>
<td>7</td>
<td>29</td>
<td>10</td>
<td>NIL</td>
</tr>
</tbody>
</table>

3) Identify strengths/weaknesses of the Programme

<table>
<thead>
<tr>
<th>STRENGTH</th>
<th>WEAKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quality of syllabus</td>
<td>Laboratory instruments</td>
</tr>
<tr>
<td>Faculty student interaction</td>
<td>Lack of industrial exposure</td>
</tr>
<tr>
<td>Laboratory work</td>
<td>Core company placements</td>
</tr>
<tr>
<td>Research projects</td>
<td>Courses taken by other department</td>
</tr>
<tr>
<td>Practical learning</td>
<td>Too many subjects in each semester</td>
</tr>
<tr>
<td>Well trained faculty</td>
<td></td>
</tr>
</tbody>
</table>

4) Grade the quality of the programme on a scale of one (least) to five (most)

<table>
<thead>
<tr>
<th>Quality of program</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of students given feedback</td>
<td>NIL</td>
<td>NIL</td>
<td>11</td>
<td>22</td>
<td>13</td>
</tr>
</tbody>
</table>
PSG COLLEGE OF TECHNOLOGY, COIMBATORE-641 004
DEPARTMENT OF BIOTECHNOLOGY
EXIT FEEDBACK - CONSOLIDATED

Name of the Programme : M. TECH - BIOTECHNOLOGY
Batch : 2017-19
Number of students
Provided exit feedback : 16

Feedback on the attainment of Programme Outcomes (PO)
(Select the appropriate level in which the PO’s are met)

<table>
<thead>
<tr>
<th>PO</th>
<th>Programme Outcome</th>
<th>Excellent</th>
<th>Very Good</th>
<th>Good</th>
<th>Fair</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Student will demonstrate a broad understanding of life science technologies</td>
<td>7</td>
<td>8</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>B</td>
<td>Student will be able to apply knowledge of science and technology for societal impact</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>C</td>
<td>Student will demonstrate ability to plan and execute experiments, and analyze and interpret outcomes</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>Student will be able to design and optimize a process or system</td>
<td>3</td>
<td>10</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>E</td>
<td>Student will be able to contribute in a team in design and development of biosystems</td>
<td>3</td>
<td>12</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>F</td>
<td>Student will be able to communicate professionally</td>
<td>4</td>
<td>11</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>G</td>
<td>Student will acquire skills to contribute/develop solutions to complex biological problems</td>
<td>4</td>
<td>11</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>H</td>
<td>Student will be able employ state of art tools in biological research</td>
<td>3</td>
<td>8</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>I</td>
<td>Student will demonstrate a knowledge of contemporary developments and sustainable system</td>
<td>2</td>
<td>9</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>J</td>
<td>Student will be able to demonstrate ability to learn new developments and adapt to changing professional requirements.</td>
<td>6</td>
<td>8</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>
Name of the Programme: MCA
EXIT FEEDBACK – 2019 passed out

1) Feedback on the attainment of Programme Outcomes (PO)
(Select the appropriate level in which the PO’s are met)

<table>
<thead>
<tr>
<th>Programme Outcome</th>
<th>Excellent (count)</th>
<th>Very Good (count)</th>
<th>Good (count)</th>
<th>Fair (count)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 An ability to apply knowledge of mathematics, computing and management principles appropriately to model the software applications</td>
<td>11</td>
<td>27</td>
<td>22</td>
<td>2</td>
</tr>
<tr>
<td>2 An ability to identify, formulate problem definition for real world problems, analyze the literature and provide software solutions</td>
<td>11</td>
<td>22</td>
<td>24</td>
<td>5</td>
</tr>
<tr>
<td>3 An ability to design, implement, and evaluate sustainable computational solutions in the form of a system, process, component, or program for various complex problems as per needs and specifications.</td>
<td>15</td>
<td>24</td>
<td>20</td>
<td>2</td>
</tr>
<tr>
<td>4 An ability to assimilate and use state of the art computing technologies, tools and techniques necessary for computing practices.</td>
<td>18</td>
<td>21</td>
<td>16</td>
<td>4</td>
</tr>
<tr>
<td>5 An ability to use research based knowledge including design and development of algorithms, analysis and interpretation of data and synthesis of information to provide valid conclusion</td>
<td>15</td>
<td>26</td>
<td>15</td>
<td>7</td>
</tr>
<tr>
<td>6 An ability to apply management principles to manage projects and develop soft skills, and practice professional ethics in multidisciplinary environments</td>
<td>15</td>
<td>22</td>
<td>21</td>
<td>3</td>
</tr>
<tr>
<td>7 An ability to communicate effectively in both verbal and written form</td>
<td>16</td>
<td>28</td>
<td>14</td>
<td>6</td>
</tr>
<tr>
<td>8 An ability to adapt standardized software engineering practices to succeed as an employee or an entrepreneur</td>
<td>13</td>
<td>25</td>
<td>19</td>
<td>3</td>
</tr>
<tr>
<td>9 An ability to engage in self learning for continual development as a computing professional and analyze the impact of computing on individuals, organizations, research community and the society at large</td>
<td>21</td>
<td>21</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>10 Ability to service and excel in fulfilling the modern day demands with their knowledge and skills</td>
<td>15</td>
<td>20</td>
<td>19</td>
<td>6</td>
</tr>
</tbody>
</table>
2019 Passed out students Exit Interview Feedback results

PSG Institute of management, PSGCT

<table>
<thead>
<tr>
<th>MANAGERIAL AND ENTREPRENEURIAL SKILLS</th>
<th>PROGRAM DELIVERY</th>
<th>FACULTY TEACHING ENGAGEMENT</th>
<th>PERSONAL GROWTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Touched extent are you now prepared for the following tasks as a manager</td>
<td>Overall, looking back at the 2 years you spent with us, your impressions are</td>
<td>Referring to the lecture delivery by faculty, how would you rate overall the following?</td>
<td>How would you rate your own growth in these key areas?</td>
</tr>
<tr>
<td>To communicate easily at a level sufficient for general conversation and business presentation</td>
<td>This course will help me in my career</td>
<td>Class Discipline</td>
<td>self-confidence</td>
</tr>
<tr>
<td>To communicate effectively in writing at a level sufficient for general conversation and business presentation</td>
<td>My specialization subjects will be of great use to me</td>
<td>Internal assignments</td>
<td>social skills</td>
</tr>
<tr>
<td>To analyze business situations and problems through knowledge gained from courses studied throughout the program</td>
<td>There was a lot of practical training included</td>
<td>Innovativeness in teaching</td>
<td>emotional maturity</td>
</tr>
<tr>
<td>To demonstrate global outlook and understanding of cultural diversity</td>
<td>The placement options were the best PSGIM could do for me</td>
<td>Compliance of the syllabus</td>
<td>teamwork</td>
</tr>
<tr>
<td>To identify and resolve ethical issues in business</td>
<td>The internet connectivity at PSGIM was good</td>
<td>Knowledge development</td>
<td></td>
</tr>
<tr>
<td>To demonstrate leadership and negotiation skills required in an organizational context</td>
<td>The cultural and social interactions at PSGIM helped me to grow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To provide alternative solutions to problems and to make decisions based on information and knowledge gained from the program</td>
<td>The outbound training program was interesting</td>
<td></td>
<td>better at conversations/discussions</td>
</tr>
<tr>
<td>To identify global factors impacting business situations and include them in decision making</td>
<td>The course structure is acceptable as it stands</td>
<td></td>
<td>applying theory to practice</td>
</tr>
<tr>
<td>To understand the impact of ethics and corporate responsibility on society</td>
<td>This program has made me more employable</td>
<td></td>
<td></td>
</tr>
<tr>
<td>To have skills and knowledge competent to contribute to the organization in which I am employed</td>
<td>Overall learning environment was excellent</td>
<td></td>
<td>work-culture</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Items measured in the students' final semester survey (March-April)
2.7 STUDENT SATISFACTION SURVEY

In addition to above, the survey also includes other parameters which measure the following:
a. Acquire in-depth knowledge with an ability to discriminate, evaluate, analyze and synthesize solutions for real time problems in the field of Information Technology.
b. Explore IT related problems; apply knowledge for synthesizing information to promote research.
c. Apply effective problem solving techniques to arrive at optimal solutions.
d. Apply appropriate research methodologies and contribute for the development of science and technology.
e. Assimilate and use state of the art computing techniques and tools to solve complex engineering problems.
f. Possess knowledge, recognize opportunities and contribute to collaborative and multidisciplinary research.
g. Understand the management principles to manage projects efficiently considering economical and financial factors.
h. Communicate effectively in oral and written manner.
i. Recognize the need and engage in life-long learning with enthusiasm and commitment to improve domain knowledge.
j. Acquire professional ethics and intellectual integrity, understand the responsibility and contribute to the sustainable development of the society.
a. An ability to apply knowledge of mathematics, science, engineering fundamentals and concepts of Information Technology to solve complex problems.

b. An ability to design, conduct experiments, as well as to analyze and interpret data.

c. An ability to design, implement and evaluate computer-based systems considering economic, environmental, social, political, ethical, health and safety issues.

d. An ability to function individually and in teams on diverse and multidisciplinary domains.

e. An ability to study a problem, identify and formulate the computing requirements appropriate to its solution.

f. An understanding of professional and ethical responsibilities.

g. An ability to communicate effectively.

h. An ability to analyze the local and global impact of computing on individuals, organizations and society.

i. An ability to engage in life-long learning.

j. Knowledge of contemporary issues.

k. An ability to use current techniques, skills and modern tools necessary for engineering and computing practice.

l. An understanding of engineering, finance and management principles to manage projects.
Programme : B.Tech (IT)
Batch – 2015-2019

Programme Outcome

- An ability to apply knowledge of mathematics, science, engineering fundamentals and concepts of Information Technology to solve complex problems.
- An ability to design, conduct experiments, as well as to analyze and interpret data.
- An ability to design, implement and evaluate computer-based systems considering economic, environmental, social, political, ethical, health and safety issues.
- An ability to function individually and in teams on diverse and multidisciplinary domains.
- An ability to study a problem, identify and formulate the computing requirements appropriate to its solution.
- An understanding of professional and ethical responsibilities.
- An ability to communicate effectively.
- An ability to analyze the local and global impact of computing on individuals, organizations and society.
- An ability to engage in life-long learning.
- Knowledge of contemporary issues.
- An ability to use current techniques, skills and modern tools necessary for engineering and computing practice.
- An understanding of engineering, finance and management principles to manage projects.
EXIT FEEDBACK CONSOLIDATION

Period of study: 2017-2019
Total Student strength: 13

1) Feedback on the attainment of Programme Outcomes (PO)

<table>
<thead>
<tr>
<th>Programme Outcome</th>
<th>Number of Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Programme Outcome</td>
<td>Excellent</td>
</tr>
<tr>
<td>a Ability to apply knowledge of mathematics, science and engineering to real world applications.</td>
<td>3</td>
</tr>
<tr>
<td>b Ability to identify, formulate and solve control engineering related problems.</td>
<td>3</td>
</tr>
<tr>
<td>c Ability to design control system, perform experimental evaluation and interpret the results professionally.</td>
<td>5</td>
</tr>
<tr>
<td>d Ability to use modern computing tools and design new process and technology.</td>
<td>6</td>
</tr>
<tr>
<td>e Ability to work in teams and apply interpersonal skills to solve multidisciplinary problems.</td>
<td>4</td>
</tr>
<tr>
<td>f Ability to understand professional and ethical responsibilities.</td>
<td>6</td>
</tr>
<tr>
<td>g Ability to effectively communicate in written and oral form.</td>
<td>6</td>
</tr>
<tr>
<td>h Ability and desire to synthesize new ideas, perform applied research and enhance continuous learning.</td>
<td>2</td>
</tr>
<tr>
<td>i Ability to serve as competent control engineers with a broad range of technical skills to address contemporary challenges</td>
<td>6</td>
</tr>
</tbody>
</table>

2) List the courses that have **STRONG/WEAK** relationship with the programme

<table>
<thead>
<tr>
<th>STRONG</th>
<th>WEAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Process control, State estimation, Principles of feedback control</td>
<td>NIL</td>
</tr>
<tr>
<td>System identification, Nonlinear control, Advanced Digital Signal Processing</td>
<td></td>
</tr>
</tbody>
</table>

3) Rate the impact of Teaching-learning process in attaining the Programme Outcomes

<table>
<thead>
<tr>
<th>Number of Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
</tr>
<tr>
<td>4</td>
</tr>
</tbody>
</table>

4) Identify strengths/weaknesses of the Programme

<table>
<thead>
<tr>
<th>STRENGTH</th>
<th>WEAKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLC and DCS Laboratory facilities</td>
<td>NIL</td>
</tr>
<tr>
<td>Attained Analytical and Problem Solving skills</td>
<td></td>
</tr>
</tbody>
</table>

5) Grade the quality of the programme on a scale of one (least) to five(most)

<table>
<thead>
<tr>
<th>Scale</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No. of Responses</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

6) Your personal feedback for the programme/department development - **NIL**
Name of the Programme: B.E. Instrumentation and Control Engineering

EXIT FEEDBACK CONSOLIDATION

Period of study: 2017-2019 Total No. of Responses: 62

1) Feedback on the attainment of Programme Outcomes (PO)

<table>
<thead>
<tr>
<th>Programme Outcome</th>
<th>Number of Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.</td>
<td>20 Excellent, 31 Very Good, 11 Good, - Fair</td>
</tr>
<tr>
<td>2. Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principle of mathematics, natural sciences, and engineering sciences.</td>
<td>15 Excellent, 32 Very Good, 14 Good, - Fair</td>
</tr>
<tr>
<td>3. Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.</td>
<td>17 Excellent, 32 Very Good, 13 Good, - Fair</td>
</tr>
<tr>
<td>4. Design and conduct experiments as well as to analyze and interpret data professionally</td>
<td>19 Excellent, 27 Very Good, 15 Good, - Fair</td>
</tr>
<tr>
<td>5. Create, select, and apply appropriate techniques, resources, and activities with an understanding of the limitations.</td>
<td>23 Excellent, 26 Very Good, 12 Good, - Fair</td>
</tr>
<tr>
<td>6. Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.</td>
<td>18 Excellent, 30 Very Good, 14 Good, - Fair</td>
</tr>
<tr>
<td>7. Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.</td>
<td>27 Excellent, 23 Very Good, 12 Good, - Fair</td>
</tr>
<tr>
<td>8. Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.</td>
<td>19 Excellent, 28 Very Good, 15 Good, - Fair</td>
</tr>
<tr>
<td>9. Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.</td>
<td>24 Excellent, 31 Very Good, 7 Good, - Fair</td>
</tr>
<tr>
<td>10. Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.</td>
<td>24 Excellent, 26 Very Good, 12 Good, - Fair</td>
</tr>
<tr>
<td>11. Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.</td>
<td>21 Excellent, 36 Very Good, 5 Good, - Fair</td>
</tr>
<tr>
<td>12. Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.</td>
<td>26 Excellent, 25 Very Good, 11 Good, - Fair</td>
</tr>
</tbody>
</table>
2) List the courses that have **STRONG/WEAK** relationship with the programme

<table>
<thead>
<tr>
<th>STRONG</th>
<th>WEAK</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Control Systems</td>
<td>• VLSI Design</td>
</tr>
<tr>
<td>• Sensors & Transducers</td>
<td></td>
</tr>
<tr>
<td>• Microprocessor & Microcontroller</td>
<td></td>
</tr>
<tr>
<td>• Industrial Instrumentation</td>
<td></td>
</tr>
</tbody>
</table>

3) Rate the impact of Teaching-learning process in attaining the Programme Outcomes

<table>
<thead>
<tr>
<th>Number of Responses</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
</tr>
<tr>
<td>16</td>
</tr>
</tbody>
</table>

4) Identify strengths/weaknesses of the Programme

<table>
<thead>
<tr>
<th>STRENGTH</th>
<th>WEAKNESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Syllabus</td>
<td>• Lab components need to be improved</td>
</tr>
<tr>
<td>• Strong Fundamentals for the subjects</td>
<td>• Participation in Technical events can be encouraged</td>
</tr>
</tbody>
</table>

5) Grade the quality of the programme on a scale of one (least) to five(most)

<table>
<thead>
<tr>
<th>Scale</th>
<th>5</th>
<th>4</th>
<th>3</th>
<th>2</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>No.of Responses</td>
<td>17</td>
<td>34</td>
<td>11</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

6) Your personal feedback for the department development: **Nil.**
Exit feedback

The PEO attainment and indirect assessment of PO/PSO attainment is done by analysing responses from outgoing students through Exit feedback. The results of employer survey are provided below:

Frequency: Collected at the end of the academic year and assessed yearly.

Number of respondents: 65

PO/PSO attainment of the academic year: 2018-19

<table>
<thead>
<tr>
<th>PO</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
<th>11</th>
<th>12</th>
<th>PSO 1</th>
<th>PSO 2</th>
<th>PSO 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>%</td>
<td>100</td>
<td>98.5</td>
<td>100</td>
<td>100</td>
<td>96.9</td>
<td>100</td>
<td>98.5</td>
<td>98.5</td>
<td>98.5</td>
<td>100</td>
<td>98.5</td>
<td>96.9</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>PO/PSO ATTAINMENT - EXIT SURVEY</td>
<td></td>
</tr>
</tbody>
</table>
M.E – INFRASTRUCTURE ENGINEERING

M.E - INFRASTRUCTURE ENGINEERING

PROGRAMME OUTCOMES

ATTAINMENT (%)

PO 1 PO 2 PO 3 PO 4 PO 5 PO 6

78 78 73 73 83 86

M.E - INFRASTRUCTURE ENGINEERING

TEACHING-LEARNING PROCESS OVERALL QUALITY OF THE PROGRAMME

ATTAINMENT (%)

75 88
M.E – STRUCTURAL ENGINEERING

M.E - STRUCTURAL ENGINEERING

<table>
<thead>
<tr>
<th>Programme Outcomes</th>
<th>Attainment (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO 1</td>
<td>92</td>
</tr>
<tr>
<td>PO 2</td>
<td>85</td>
</tr>
<tr>
<td>PO 3</td>
<td>78</td>
</tr>
<tr>
<td>PO 4</td>
<td>73</td>
</tr>
<tr>
<td>PO 5</td>
<td>90</td>
</tr>
<tr>
<td>PO 6</td>
<td>82</td>
</tr>
</tbody>
</table>

M.E - STRUCTURAL ENGINEERING

<table>
<thead>
<tr>
<th>Teaching-Learning Process</th>
<th>Overall Quality of the Programme</th>
</tr>
</thead>
<tbody>
<tr>
<td>83</td>
<td>77</td>
</tr>
</tbody>
</table>
Department: Biomedical Engineering (Academic Year: 2018-2019)- Passed out
Programme & Branch/Specialization: B.E & Biomedical Engineering

II. A) PO Attainment

<table>
<thead>
<tr>
<th>PO1</th>
<th>PO2</th>
<th>PO3</th>
<th>PO4</th>
<th>PO5</th>
<th>PO6</th>
<th>PO7</th>
<th>PO8</th>
<th>PO9</th>
<th>PO10</th>
<th>PO11</th>
<th>PO12</th>
<th>PSO1</th>
<th>PSO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect Attainment (IA) (Through Exit Survey)</td>
<td>74</td>
<td>50</td>
<td>52</td>
<td>76</td>
<td>80</td>
<td>80</td>
<td>74</td>
<td>70</td>
<td>74</td>
<td>60</td>
<td>86</td>
<td>66</td>
<td>70.16</td>
</tr>
</tbody>
</table>

II. B) PSO Attainment

<table>
<thead>
<tr>
<th>PSO1</th>
<th>PSO2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indirect Attainment (IA) (Through Exit Survey)</td>
<td>70.16</td>
</tr>
</tbody>
</table>
Name of the Programme: B.E. AUTOMOBILE ENGINEERING

EXIT FEEDBACK

Name:
Roll No.:

1) Feedback on the attainment of Programme Outcomes (PO)
(Select the appropriate level in which the PO’s are met)

2) List the courses that have STRONG/WEAK relationship with the programme
3) Rate the impact of Teaching-learning process in attaining the Programme Outcomes

4) Identify strengths/weaknesses of the Programme

5) Grade the quality of the programme on a scale of one (least) to five (most)
<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>Excellent</td>
<td>54</td>
<td>38</td>
<td>50</td>
<td>41</td>
<td>41</td>
<td>45</td>
<td>46</td>
<td>60</td>
<td>53</td>
<td>47</td>
<td>48</td>
<td>51</td>
</tr>
<tr>
<td>very good</td>
<td>57</td>
<td>62</td>
<td>61</td>
<td>57</td>
<td>55</td>
<td>61</td>
<td>60</td>
<td>54</td>
<td>61</td>
<td>62</td>
<td>65</td>
<td>57</td>
</tr>
<tr>
<td>good</td>
<td>22</td>
<td>34</td>
<td>21</td>
<td>25</td>
<td>37</td>
<td>22</td>
<td>25</td>
<td>16</td>
<td>17</td>
<td>22</td>
<td>18</td>
<td>23</td>
</tr>
<tr>
<td>fair</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>7</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
<th>g</th>
<th>h</th>
<th>i</th>
<th>j</th>
<th>k</th>
<th>l</th>
</tr>
</thead>
<tbody>
<tr>
<td>32</td>
<td>30.15</td>
<td>31.7</td>
<td>28.7</td>
<td>30.15</td>
<td>30.67</td>
<td>31</td>
<td>32.52</td>
<td>32.07</td>
<td>31.2</td>
<td>31.56</td>
<td>31.48148</td>
<td></td>
</tr>
</tbody>
</table>
BE ECE G2 (2015-2019)

<table>
<thead>
<tr>
<th></th>
<th>EXCELLENT</th>
<th>VERY GOOD</th>
<th>GOOD</th>
<th>FAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>PO1</td>
<td>23</td>
<td>27</td>
<td>10</td>
<td>2</td>
</tr>
<tr>
<td>PO2</td>
<td>27</td>
<td>26</td>
<td>7</td>
<td>2</td>
</tr>
<tr>
<td>PO3</td>
<td>27</td>
<td>22</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>PO4</td>
<td>22</td>
<td>24</td>
<td>12</td>
<td>4</td>
</tr>
<tr>
<td>PO5</td>
<td>30</td>
<td>16</td>
<td>13</td>
<td>2</td>
</tr>
<tr>
<td>PO6</td>
<td>27</td>
<td>22</td>
<td>10</td>
<td>3</td>
</tr>
<tr>
<td>PO7</td>
<td>27</td>
<td>24</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>PO8</td>
<td>29</td>
<td>22</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>PO9</td>
<td>30</td>
<td>24</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>PO10</td>
<td>30</td>
<td>22</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>PO11</td>
<td>26</td>
<td>24</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>PO12</td>
<td>25</td>
<td>26</td>
<td>8</td>
<td>3</td>
</tr>
<tr>
<td>PO13</td>
<td>28</td>
<td>22</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>PO14</td>
<td>33</td>
<td>19</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>PO15</td>
<td>29</td>
<td>22</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>413</td>
<td>342</td>
<td>147</td>
<td>27</td>
</tr>
</tbody>
</table>
ME COMMUNICATION SYSTEMS (2017-2019)

<table>
<thead>
<tr>
<th></th>
<th>EXCELLENT</th>
<th>VERY GOOD</th>
<th>GOOD</th>
<th>FAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>0</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>2</td>
<td>1</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>g</td>
<td>1</td>
<td>3</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>h</td>
<td>1</td>
<td>3</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>i</td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>j</td>
<td>2</td>
<td>3</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>3</td>
<td>1</td>
<td>10</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>23</td>
<td>110</td>
<td>1</td>
</tr>
</tbody>
</table>

ME COMMUNICATION SYSTEMS (2017-2019)

![Pie Chart](chart.png)
<table>
<thead>
<tr>
<th></th>
<th>EXCELLENT</th>
<th>VERY GOOD</th>
<th>GOOD</th>
<th>FAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>6</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>2</td>
<td>1</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>1</td>
<td>4</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>g</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>h</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>i</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>j</td>
<td>3</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>2</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>l</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>26</td>
<td>38</td>
<td>14</td>
<td>0</td>
</tr>
</tbody>
</table>
ME VLSI DESIGN (2017-2019)

<table>
<thead>
<tr>
<th></th>
<th>EXCELLENT</th>
<th>VERY GOOD</th>
<th>GOOD</th>
<th>FAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>12</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>3</td>
<td>13</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>12</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>8</td>
<td>7</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>5</td>
<td>10</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>g</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>h</td>
<td>8</td>
<td>8</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>i</td>
<td>10</td>
<td>5</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>j</td>
<td>9</td>
<td>7</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>11</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>l</td>
<td>6</td>
<td>9</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>100</td>
<td>86</td>
<td>6</td>
<td>0</td>
</tr>
</tbody>
</table>

![Pie chart showing distribution of grades](image-url)
ME WIRELESS COMMUNICATION (2017-2019)

<table>
<thead>
<tr>
<th></th>
<th>EXCELLENT</th>
<th>VERY GOOD</th>
<th>GOOD</th>
<th>FAIR</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>1</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>g</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>h</td>
<td>3</td>
<td>0</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>i</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>j</td>
<td>2</td>
<td>3</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>k</td>
<td>1</td>
<td>4</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>l</td>
<td>0</td>
<td>4</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>TOTAL</td>
<td>13</td>
<td>31</td>
<td>16</td>
<td>0</td>
</tr>
</tbody>
</table>